Issues

Journal & Issues

AHEAD OF PRINT

Volume 22 (2022): Issue 3 (September 2022)

Volume 22 (2022): Issue 2 (June 2022)

Volume 22 (2022): Issue 1 (March 2022)

Volume 21 (2021): Issue 4 (December 2021)

Volume 21 (2021): Issue 3 (September 2021)

Volume 21 (2021): Issue 2 (June 2021)

Volume 21 (2021): Issue 1 (March 2021)

Volume 20 (2020): Issue 4 (December 2020)

Volume 20 (2020): Issue 3 (September 2020)

Volume 20 (2020): Issue 2 (June 2020)

Volume 20 (2020): Issue 1 (March 2020)

Volume 19 (2019): Issue 4 (December 2019)

Volume 19 (2019): Issue 3 (September 2019)

Volume 19 (2019): Issue 2 (June 2019)

Volume 19 (2019): Issue 1 (March 2019)

Volume 18 (2018): Issue 4 (December 2018)

Volume 18 (2018): Issue 3 (September 2018)

Volume 18 (2018): Issue 2 (June 2018)

Volume 18 (2018): Issue 1 (March 2018)

Volume 17 (2017): Issue 4 (December 2017)

Volume 17 (2017): Issue 3 (September 2017)

Volume 17 (2017): Issue 2 (June 2017)

Volume 17 (2017): Issue 1 (March 2017)

Volume 16 (2016): Issue 4 (December 2016)

Volume 16 (2016): Issue 3 (September 2016)

Volume 16 (2016): Issue 2 (June 2016)

Volume 16 (2016): Issue 1 (March 2016)

Volume 15 (2015): Issue 4 (December 2015)

Volume 15 (2015): Issue 3 (September 2015)

Volume 15 (2015): Issue 2 (June 2015)

Volume 15 (2015): Issue 1 (March 2015)

Volume 14 (2014): Issue 4 (December 2014)

Volume 14 (2014): Issue 3 (September 2014)

Volume 14 (2014): Issue 2 (June 2014)

Volume 14 (2014): Issue 1 (March 2014)

Volume 13 (2013): Issue 4 (December 2013)

Volume 13 (2013): Issue 3 (September 2013)

Volume 13 (2013): Issue 2 (June 2013)

Volume 13 (2013): Issue 1 (March 2013)

Volume 12 (2012): Issue 4 (December 2012)

Volume 12 (2012): Issue 3 (September 2012)

Volume 12 (2012): Issue 2 (June 2012)

Volume 12 (2012): Issue 1 (March 2012)

Journal Details
Format
Journal
eISSN
2300-0929
First Published
19 Oct 2012
Publication timeframe
4 times per year
Languages
English

Search

Volume 20 (2020): Issue 2 (June 2020)

Journal Details
Format
Journal
eISSN
2300-0929
First Published
19 Oct 2012
Publication timeframe
4 times per year
Languages
English

Search

14 Articles
Open Access

Compressive Property of an Auxetic-Knitted Composite Tube Under Quasi-Static Loading

Published Online: 13 May 2020
Page range: 101 - 109

Abstract

Abstract

This research investigates the compressive property of a novel composite based on a weft-knitted auxetic tube subjected to a quasi-static compression test. In order to maximize the influence of the fiber content on the compression test, a Kevlar yarn was used in knitting the tubular samples using three different auxetic arrow-head structures (i.e. 4 × 4, 6 × 6 and 8 × 8 structure). A quasi-static compression test was conducted under two different impact loading speeds (i.e. 5 mm/min and 15 mm/min loading speed). The results indicate that the energy absorption (EA) property of the auxetic composite is highly influenced by the auxeticity of the knitted tubular fabric.

Keywords

  • Auxetic
  • knitted composite tube
  • energy absorption
Open Access

Investigation of the Tribological Behaviors of Upholstery Woven Fabrics after Abrasion

Published Online: 13 May 2020
Page range: 110 - 120

Abstract

Abstract

Fabric surface tribology is an important area of study in upholstery fabrics, which is exposed to high friction and abrasion effects. In the studies on the tribology of upholstery fabrics, it is ensured that criteria such as better performance, less degradation, increased usage time, and user comfort are determined and taken into consideration in the woven fabric design. Surface roughness and friction coefficients are important parameters used in determining abrasion, deformation, and wear behaviors of fabrics. In this study, the surface abrasion behaviors of upholstery fabrics woven with basic and jacquard weave patterns and also different structural parameters were investigated in terms of the changes in surface roughness parameters (amplitude parameters: Ra, Rpm, and Rvm and hybrid parameters: Δa) and the changes in surface friction coefficients. These results were also related to the state of the visual changes in the fabrics. Rpm, Rvm, and Δa being roughness parameters were found to be important in the evaluation of the surface deformation of the fabrics after abrasion besides the Ra parameter. Results showed that the Δa roughness parameter could be suitable for evaluating the deformation of the textile structures to be used, particularly in sensitive applications.

Keywords

  • surface roughness parameters
  • surface friction coefficient
  • abrasion
  • upholstery fabric
Open Access

Microstructural Damage Characteristic of a Layer-to-Layer Three-Dimensional Angle-Interlock Woven Composite Under Quasi-Static Tensile Loading

Published Online: 13 May 2020
Page range: 121 - 127

Abstract

Abstract

Three-dimensional angle-interlock woven composites (3DAWCs) are widely used for their excellent mechanical properties. The most significant feature is the existence of the undulated warp yarns along the thickness direction, which makes it interesting to study the mechanical properties in the warp direction. The quasi-static tensile behavior of a layer-to-layer 3DAWC along the undulated warp direction was studied by experimental and finite element analysis (FEA) methods. Based on the experimental results, the typical failure mode involving fibers, resin, and their interfaces was found. According to the FEA results, the stress concentration effect, key structural regions, and microstructural (yarn and resin) damage mechanism were obtained, which provided effective guidance for structural optimization design of the 3DAWC with stronger tensile resistance performance. In addition, the three-step progressive failure process of the 3DAWC under quasi-static tensile load was also described at the “yarn–resin” microstructural level.

Keywords

  • three-dimensional angle-interlock woven composite (3DAWC)
  • quasi-static tensile
  • structural failure mechanism
  • finite element analysis (FEA)
Open Access

Initial Investigation Into Real 3D Body Scanning Versus Avatars for the Virtual Fitting of Garments

Published Online: 13 May 2020
Page range: 128 - 132

Abstract

Abstract

The clothing industry is currently focused on 3D virtual fitting. Many companies use size 12 as the core size; however, in recent years the average size has increased. For example, in the United Kingdom, the average size is now 16. Many companies have not updated their core size and often use size 12 as the size they are the most familiar with. The purpose of this paper is to compare real plus size body shapes with artificial avatars in relation to the fabric draping. This paper will investigate, how the body shape changes with an age (body height decreases, skin elasticity is lower, the shoulders are hunched, buttocks sag and fatness pockets are accumulated around the waist area). These factors are not considered in virtual avatars, but have a big impact on virtual fitting.

Keywords

  • 3D body scanning
  • body shapes
  • avatars
  • virtual fitting
Open Access

Mathematical Model Predicting the Heat and Power Dissipated in an Electro-Conductive Contact in a Hybrid Woven Fabric

Published Online: 13 May 2020
Page range: 133 - 139

Abstract

Abstract

Electro-conductive (EC) yarns can be woven into a hybrid fabric to enable electrical current to flow through the fabric from one component A to another component B. These hybrid fabrics form the bases of woven e-textiles. However, at the crossing point of an EC yarn in warp and in weft direction, there is a contact resistance and thus generation of heat may occur in this area. Both phenomena are inseparable: if the contact resistance in the EC contact increases, the generated heat will increase as well. Predicting this electrical and thermal behavior of EC contacts in hybrid woven fabrics with stainless steel yarns is possible with a mathematical model based on the behavior of a metal oxide varistor (MOV). This paper will discuss in detail how this can be achieved.

Keywords

  • Hybrid woven fabrics
  • e-textiles
  • stainless steel
  • electro-conductive contacts
  • contact resistance
  • metal oxide varistor
Open Access

A Method of 1D UVC Radiation Dose Measurement using a Novel Tablet Dosimeter

Published Online: 13 May 2020
Page range: 140 - 147

Abstract

Abstract

In this work, a method for the measurement of one-dimensional (1D) UV radiation dose is described. It comprises a new tablet dosimeter that measures the dose using reflectance spectrophotometry. The tablet dosimeter elaborated is a solid structure with a cylindrical form and has been manufactured with polycaprolactone (PCL) doped with a representative of tetrazolium salts: 2,3,5−triphenyltetrazolium chloride (TTC). The PCL used makes the dosimeter biodegradable and therefore proecological. The TTC dopant is distributed uniformly in the whole PCL tablet, and the whole tablet changes color to red under UVC irradiation. The intensity of this color increases if the PCL–TTC tablet absorbs higher doses. The color of the tablet is stable for at least 30 days after irradiation. It is proposed that the PCL-TTC tablet be used for measurement with reflectance spectrophotometry in order to determine the reflectance of light versus the absorbed dose in a fast and easy manner. On this basis, the PCL-TTC tablet could be characterized by providing information on its dose range, which amounted to 0–2 J/cm2. Moreover, other parameters were derived, such as dose sensitivity, quasilinear dose range, and dose threshold. The morphology of the tablets studied using scanning electron microscopy revealed their high porosity, which however did not influence the reflectance measurements with the aid of the chosen instrument. UVC irradiation at a dose (15 J/cm2) much above the PCL-TTC tablets’ dose range did not alter the morphology of the tablets. The PCL-TTC tablet read with reflectance spectrophotometry is shown to be a promising and fast method for 1D UV dose measurements.

Keywords

  • UV dosimeter
  • tablet dosimeter
  • tetrazolium salt
  • polycaprolactone
  • 2,3,5−triphenyltetrazolium chloride
Open Access

Introducing a Newly Developed Fabric for Air Filtration

Published Online: 13 May 2020
Page range: 148 - 154

Abstract

Abstract

Woven and nonwoven fabrics present filtration efficiency higher than other air filtration media. Fabrics are selected according to air flow conditions and particle characteristics. The majority of air filtration media are nonwoven fabrics because of their cost, but they need high filtration area for high efficiency. Modified construction of woven fabric introduces high performance in air filtration and decreases filter size, which tends to have better competition abilities. The designed fabrics have considerable thickness and suitable pore characteristics by applying roving instead of weft yarns. Four factors (roving count and their turns per inch, picks per inch and fabric designs) were varied in order to study the effect of these factors on their performance in filtration. Optimum operating conditions for a determined range of air permeability and pore size were obtained.

Keywords

  • Roving weft
  • Air permeability
  • Pore size
  • Filtration performance
Open Access

A New Approach to Evaluate Fabric Hand Based on Three-Dimensional Drape Model

Published Online: 13 May 2020
Page range: 155 - 167

Abstract

Abstract

Fabric quality and performance is assessed subjectively by the customer using an important and complex phenomenon of fabric hand. Objectively, it is evaluated with complicated and expensive instruments, such as Kawabata Evaluation System for Fabrics (KES-F) and Fabric Assurance with Simple Testing (FAST). The present research explores a non-touch objective approach, i.e., three-dimensional (3D) drape model to estimate fabric hand. Fabric hand prediction was testified on different commercial fabrics spanning a wide range of areal weight, thickness, yarn count, and fabric density. Fabric objective ranks based on drape indicators using principal component analysis (PCA) were compared with subjective ranks of fabric hand. Additionally, fabric drape is evaluated three dimensionally and a new drape indicator drape height (DH) is proposed. The cosine similarity results have proved fabric drape as an objective alternate to fabric hand.

Keywords

  • 3D drape
  • Comprehensive score
  • Cosine similarity
  • Fabric hand
  • PCA
  • Ranking
Open Access

Study on the use of Aerogel on the Surface of Basalt Fabric

Published Online: 13 May 2020
Page range: 168 - 177

Abstract

Abstract

The layer of aerogel was applied to the surface of basalt fabric due to the possibility of improving a fabric protecting against the influence of hot environmental factors. The analysis of aerogel surface roughness and thickness of the obtained sample, resistance to contact heat for the contact temperature between 100°C and 250°C, and tests of resistance to the penetration of thermal radiation were carried out. In addition, thermal conductivity, thermal resistance, thermal diffusion, thermal absorption, and surface roughness were determined. The obtained results indicate the unevenness of aerogel application on the surface of basalt fabric. For this reason, work should be carried out on an appropriate technology that will allow them to be applied evenly on the surface of the fabric. The parameters tested and the results obtained are promising in terms of the possibility of using the fabric obtained in protective gloves.

Keywords

  • Aerogel
  • basalt fabric
  • protective gloves
  • hot work environment
  • surface roughness
  • CIELAB
Open Access

Analysis of Factors Affecting Thermal Comfort Properties of Woven Compression Bandages

Published Online: 13 May 2020
Page range: 178 - 185

Abstract

Abstract

Compression bandage (CB) as a porous material should provide both graduated pressure and thermal comfort properties to enable air permeability, heat transfer, and liquid perspiration out of the human body. The main factors affecting thermal comfort properties are the temperature difference between environment and skin, yarns’ structure and material, fabric thickness, porosity, areal density, number of fabric layers, trapped air, and fabric structure. Thermal resistance (Rct) and water vapor resistance (Ret) are evaluated for four types of woven CBs. All bandage types were applied at the range of extension (10–80%) using both two- and three-layer bandaging on thermal foot model (TFM). Rct values are compared with measured results by the Alambeta instrument, whereas Ret test is performed on the Permetest device. Thermal resistance is significantly decreased when increasing the bandage extension from 10 to 40%, then it is slightly increased by increasing the extension from 40 to 60%, after that it is decreased especially at 80% extension due to lower bandage thickness and higher compression.

Keywords

  • Thermal and water vapor resistance
  • R and R
  • thermal foot model
  • extension
  • air permeability
  • bandage properties
Open Access

Country-Specific Determinants of Textile Industry Development in Poland: Comparative Analysis of the Years 2007 and 2017

Published Online: 13 May 2020
Page range: 186 - 193

Abstract

Abstract

The textile industry is a significant sector of the Polish economy and is characterized by a strong potential. Its development can be ensured by activities in the areas of finance, technical infrastructure, environmental protection, and demographic conditions. The development of the textile sector is significantly affected by factors such as quality of commune and poviat roads, length of the sewerage network, expenditure on environmental protection, expenditures on innovative activity and on research and development, and costs related to employment and population of working age. The aim of this paper is to determine the attractiveness level of individual Polish regions for the development of the textile sector in relation to five microclimates, which somehow define the most important determinants of the development of this sector of the economy. In order to achieve this aim, the following research methods are used: presentation of statistical data and statistical methods of research. The authors test the research hypothesis that the growth potential of textile industry enterprises is the largest in the most prosperous provinces.

Keywords

  • Attractiveness
  • textiles
  • industry
  • economics
Open Access

Comparative Study of Needle Penetration Forces in Sewing Hems on Toweling Terry Fabrics: Influence of Needle Type and Size

Published Online: 13 May 2020
Page range: 194 - 202

Abstract

Abstract

In this paper, an industrial case study comparing the use of different needles in the production of hems in towels is presented. The study aims to assess the sewability of the fabrics, quantified by needle penetration forces. The market offers an interesting range of options for the needle, regarding the geometry of the needle point, surface finishing, and sizes. However, in practice, the choice is difficult, namely due to the lack of quantitative data that may support the empirical evaluation made by the sewing technicians. The work aims to assess how the needle type and size relate to the resulting needle penetration forces. Three terry fabric structures, produced by a home textiles manufacturer, were tested using needles of different sizes, points, and coatings. Needle penetration forces were measured on a sewability tester prototype, previously designed and developed, based on an instrumented overedge sewing machine. It was found that needle penetration forces present very significant differences with small size increments, needle coating also influences forces significantly, and different needle points produce only slight differences, significant only on some of the fabrics that were tested.

Keywords

  • sewing
  • sewability
  • needle penetration forces
  • sewing needles
Open Access

Numerical and Experimental Comparative Analysis of Ballistic Performance of Packages Made of Biaxial and Triaxial Kevlar 29 Fabrics

Published Online: 13 May 2020
Page range: 203 - 219

Abstract

Abstract

The objective of this study is a comparative analysis of the ballistic effectiveness of packages made of biaxial and triaxial Kevlar 29 fabrics under the hitting of Parabellum 9×19 bullet. We conduct both numerical simulations using the LS-Dyna program and experimental research in a ballistic research laboratory. Based on the comparative analysis of the results from the numerical and experimental research, demonstrated differences exist in the ballistic effectiveness between the packages made of biaxial fabrics and the packages consisting of triaxial fabrics. For this purpose, the residual velocity of the bullet is analyzed in detail in terms of the maximum deformation cone, the shape of the deformation cone, and the distribution of stress for the textile ballistic packages. It is established that the packages made of triaxial fabric show a considerably smaller deformation cone compared with the packages made of biaxial fabric, a more favorable shape of the deformation cone from the perspective of ballistic trauma and distribution of stress similar to materials with isotropic properties. Poorer properties are recorded for these packages in the case of the minimum number of layers necessary for stopping the bullet, which arises from the open-work structure of the fabric.

Keywords

  • Triaxial fabric
  • biaxial fabric
  • Kevlar 29
  • ballistic packages
  • ballistic performance
  • finite element method
Open Access

Characterization of Fabric-to-Fabric Friction: Application to Medical Compression Bandages

Published Online: 13 May 2020
Page range: 220 - 227

Abstract

Abstract

Fabric-to-fabric friction is involved in the action mechanism of medical compression devices such as compression bandages or lumbar belts. To better understand the action of such devices, it is essential to characterize, in their use conditions (mainly pressure and stretch), the frictional properties of the fabrics they are composed of. A characterization method of fabric-to-fabric friction was developed. This method was based on the customization of the fourth instrument of the Kawabata Evaluation System, initially designed for fabric roughness and friction characterization. A friction contactor was developed so that the stretch of the fabric and the applied load can vary to replicate the use conditions. This methodology was implemented to measure the friction coefficient of several medical compression bandages. In the ranges of pressure and bandage stretch investigated in the study, bandage-to-bandage friction coefficient showed very little variation. This simple and reliable method, which was tested for commercially available medical compression bandages, could be used for other medical compression fabrics.

Keywords

  • Fabric friction
  • friction measurement
  • friction coefficient
  • medical compression bandages
14 Articles
Open Access

Compressive Property of an Auxetic-Knitted Composite Tube Under Quasi-Static Loading

Published Online: 13 May 2020
Page range: 101 - 109

Abstract

Abstract

This research investigates the compressive property of a novel composite based on a weft-knitted auxetic tube subjected to a quasi-static compression test. In order to maximize the influence of the fiber content on the compression test, a Kevlar yarn was used in knitting the tubular samples using three different auxetic arrow-head structures (i.e. 4 × 4, 6 × 6 and 8 × 8 structure). A quasi-static compression test was conducted under two different impact loading speeds (i.e. 5 mm/min and 15 mm/min loading speed). The results indicate that the energy absorption (EA) property of the auxetic composite is highly influenced by the auxeticity of the knitted tubular fabric.

Keywords

  • Auxetic
  • knitted composite tube
  • energy absorption
Open Access

Investigation of the Tribological Behaviors of Upholstery Woven Fabrics after Abrasion

Published Online: 13 May 2020
Page range: 110 - 120

Abstract

Abstract

Fabric surface tribology is an important area of study in upholstery fabrics, which is exposed to high friction and abrasion effects. In the studies on the tribology of upholstery fabrics, it is ensured that criteria such as better performance, less degradation, increased usage time, and user comfort are determined and taken into consideration in the woven fabric design. Surface roughness and friction coefficients are important parameters used in determining abrasion, deformation, and wear behaviors of fabrics. In this study, the surface abrasion behaviors of upholstery fabrics woven with basic and jacquard weave patterns and also different structural parameters were investigated in terms of the changes in surface roughness parameters (amplitude parameters: Ra, Rpm, and Rvm and hybrid parameters: Δa) and the changes in surface friction coefficients. These results were also related to the state of the visual changes in the fabrics. Rpm, Rvm, and Δa being roughness parameters were found to be important in the evaluation of the surface deformation of the fabrics after abrasion besides the Ra parameter. Results showed that the Δa roughness parameter could be suitable for evaluating the deformation of the textile structures to be used, particularly in sensitive applications.

Keywords

  • surface roughness parameters
  • surface friction coefficient
  • abrasion
  • upholstery fabric
Open Access

Microstructural Damage Characteristic of a Layer-to-Layer Three-Dimensional Angle-Interlock Woven Composite Under Quasi-Static Tensile Loading

Published Online: 13 May 2020
Page range: 121 - 127

Abstract

Abstract

Three-dimensional angle-interlock woven composites (3DAWCs) are widely used for their excellent mechanical properties. The most significant feature is the existence of the undulated warp yarns along the thickness direction, which makes it interesting to study the mechanical properties in the warp direction. The quasi-static tensile behavior of a layer-to-layer 3DAWC along the undulated warp direction was studied by experimental and finite element analysis (FEA) methods. Based on the experimental results, the typical failure mode involving fibers, resin, and their interfaces was found. According to the FEA results, the stress concentration effect, key structural regions, and microstructural (yarn and resin) damage mechanism were obtained, which provided effective guidance for structural optimization design of the 3DAWC with stronger tensile resistance performance. In addition, the three-step progressive failure process of the 3DAWC under quasi-static tensile load was also described at the “yarn–resin” microstructural level.

Keywords

  • three-dimensional angle-interlock woven composite (3DAWC)
  • quasi-static tensile
  • structural failure mechanism
  • finite element analysis (FEA)
Open Access

Initial Investigation Into Real 3D Body Scanning Versus Avatars for the Virtual Fitting of Garments

Published Online: 13 May 2020
Page range: 128 - 132

Abstract

Abstract

The clothing industry is currently focused on 3D virtual fitting. Many companies use size 12 as the core size; however, in recent years the average size has increased. For example, in the United Kingdom, the average size is now 16. Many companies have not updated their core size and often use size 12 as the size they are the most familiar with. The purpose of this paper is to compare real plus size body shapes with artificial avatars in relation to the fabric draping. This paper will investigate, how the body shape changes with an age (body height decreases, skin elasticity is lower, the shoulders are hunched, buttocks sag and fatness pockets are accumulated around the waist area). These factors are not considered in virtual avatars, but have a big impact on virtual fitting.

Keywords

  • 3D body scanning
  • body shapes
  • avatars
  • virtual fitting
Open Access

Mathematical Model Predicting the Heat and Power Dissipated in an Electro-Conductive Contact in a Hybrid Woven Fabric

Published Online: 13 May 2020
Page range: 133 - 139

Abstract

Abstract

Electro-conductive (EC) yarns can be woven into a hybrid fabric to enable electrical current to flow through the fabric from one component A to another component B. These hybrid fabrics form the bases of woven e-textiles. However, at the crossing point of an EC yarn in warp and in weft direction, there is a contact resistance and thus generation of heat may occur in this area. Both phenomena are inseparable: if the contact resistance in the EC contact increases, the generated heat will increase as well. Predicting this electrical and thermal behavior of EC contacts in hybrid woven fabrics with stainless steel yarns is possible with a mathematical model based on the behavior of a metal oxide varistor (MOV). This paper will discuss in detail how this can be achieved.

Keywords

  • Hybrid woven fabrics
  • e-textiles
  • stainless steel
  • electro-conductive contacts
  • contact resistance
  • metal oxide varistor
Open Access

A Method of 1D UVC Radiation Dose Measurement using a Novel Tablet Dosimeter

Published Online: 13 May 2020
Page range: 140 - 147

Abstract

Abstract

In this work, a method for the measurement of one-dimensional (1D) UV radiation dose is described. It comprises a new tablet dosimeter that measures the dose using reflectance spectrophotometry. The tablet dosimeter elaborated is a solid structure with a cylindrical form and has been manufactured with polycaprolactone (PCL) doped with a representative of tetrazolium salts: 2,3,5−triphenyltetrazolium chloride (TTC). The PCL used makes the dosimeter biodegradable and therefore proecological. The TTC dopant is distributed uniformly in the whole PCL tablet, and the whole tablet changes color to red under UVC irradiation. The intensity of this color increases if the PCL–TTC tablet absorbs higher doses. The color of the tablet is stable for at least 30 days after irradiation. It is proposed that the PCL-TTC tablet be used for measurement with reflectance spectrophotometry in order to determine the reflectance of light versus the absorbed dose in a fast and easy manner. On this basis, the PCL-TTC tablet could be characterized by providing information on its dose range, which amounted to 0–2 J/cm2. Moreover, other parameters were derived, such as dose sensitivity, quasilinear dose range, and dose threshold. The morphology of the tablets studied using scanning electron microscopy revealed their high porosity, which however did not influence the reflectance measurements with the aid of the chosen instrument. UVC irradiation at a dose (15 J/cm2) much above the PCL-TTC tablets’ dose range did not alter the morphology of the tablets. The PCL-TTC tablet read with reflectance spectrophotometry is shown to be a promising and fast method for 1D UV dose measurements.

Keywords

  • UV dosimeter
  • tablet dosimeter
  • tetrazolium salt
  • polycaprolactone
  • 2,3,5−triphenyltetrazolium chloride
Open Access

Introducing a Newly Developed Fabric for Air Filtration

Published Online: 13 May 2020
Page range: 148 - 154

Abstract

Abstract

Woven and nonwoven fabrics present filtration efficiency higher than other air filtration media. Fabrics are selected according to air flow conditions and particle characteristics. The majority of air filtration media are nonwoven fabrics because of their cost, but they need high filtration area for high efficiency. Modified construction of woven fabric introduces high performance in air filtration and decreases filter size, which tends to have better competition abilities. The designed fabrics have considerable thickness and suitable pore characteristics by applying roving instead of weft yarns. Four factors (roving count and their turns per inch, picks per inch and fabric designs) were varied in order to study the effect of these factors on their performance in filtration. Optimum operating conditions for a determined range of air permeability and pore size were obtained.

Keywords

  • Roving weft
  • Air permeability
  • Pore size
  • Filtration performance
Open Access

A New Approach to Evaluate Fabric Hand Based on Three-Dimensional Drape Model

Published Online: 13 May 2020
Page range: 155 - 167

Abstract

Abstract

Fabric quality and performance is assessed subjectively by the customer using an important and complex phenomenon of fabric hand. Objectively, it is evaluated with complicated and expensive instruments, such as Kawabata Evaluation System for Fabrics (KES-F) and Fabric Assurance with Simple Testing (FAST). The present research explores a non-touch objective approach, i.e., three-dimensional (3D) drape model to estimate fabric hand. Fabric hand prediction was testified on different commercial fabrics spanning a wide range of areal weight, thickness, yarn count, and fabric density. Fabric objective ranks based on drape indicators using principal component analysis (PCA) were compared with subjective ranks of fabric hand. Additionally, fabric drape is evaluated three dimensionally and a new drape indicator drape height (DH) is proposed. The cosine similarity results have proved fabric drape as an objective alternate to fabric hand.

Keywords

  • 3D drape
  • Comprehensive score
  • Cosine similarity
  • Fabric hand
  • PCA
  • Ranking
Open Access

Study on the use of Aerogel on the Surface of Basalt Fabric

Published Online: 13 May 2020
Page range: 168 - 177

Abstract

Abstract

The layer of aerogel was applied to the surface of basalt fabric due to the possibility of improving a fabric protecting against the influence of hot environmental factors. The analysis of aerogel surface roughness and thickness of the obtained sample, resistance to contact heat for the contact temperature between 100°C and 250°C, and tests of resistance to the penetration of thermal radiation were carried out. In addition, thermal conductivity, thermal resistance, thermal diffusion, thermal absorption, and surface roughness were determined. The obtained results indicate the unevenness of aerogel application on the surface of basalt fabric. For this reason, work should be carried out on an appropriate technology that will allow them to be applied evenly on the surface of the fabric. The parameters tested and the results obtained are promising in terms of the possibility of using the fabric obtained in protective gloves.

Keywords

  • Aerogel
  • basalt fabric
  • protective gloves
  • hot work environment
  • surface roughness
  • CIELAB
Open Access

Analysis of Factors Affecting Thermal Comfort Properties of Woven Compression Bandages

Published Online: 13 May 2020
Page range: 178 - 185

Abstract

Abstract

Compression bandage (CB) as a porous material should provide both graduated pressure and thermal comfort properties to enable air permeability, heat transfer, and liquid perspiration out of the human body. The main factors affecting thermal comfort properties are the temperature difference between environment and skin, yarns’ structure and material, fabric thickness, porosity, areal density, number of fabric layers, trapped air, and fabric structure. Thermal resistance (Rct) and water vapor resistance (Ret) are evaluated for four types of woven CBs. All bandage types were applied at the range of extension (10–80%) using both two- and three-layer bandaging on thermal foot model (TFM). Rct values are compared with measured results by the Alambeta instrument, whereas Ret test is performed on the Permetest device. Thermal resistance is significantly decreased when increasing the bandage extension from 10 to 40%, then it is slightly increased by increasing the extension from 40 to 60%, after that it is decreased especially at 80% extension due to lower bandage thickness and higher compression.

Keywords

  • Thermal and water vapor resistance
  • R and R
  • thermal foot model
  • extension
  • air permeability
  • bandage properties
Open Access

Country-Specific Determinants of Textile Industry Development in Poland: Comparative Analysis of the Years 2007 and 2017

Published Online: 13 May 2020
Page range: 186 - 193

Abstract

Abstract

The textile industry is a significant sector of the Polish economy and is characterized by a strong potential. Its development can be ensured by activities in the areas of finance, technical infrastructure, environmental protection, and demographic conditions. The development of the textile sector is significantly affected by factors such as quality of commune and poviat roads, length of the sewerage network, expenditure on environmental protection, expenditures on innovative activity and on research and development, and costs related to employment and population of working age. The aim of this paper is to determine the attractiveness level of individual Polish regions for the development of the textile sector in relation to five microclimates, which somehow define the most important determinants of the development of this sector of the economy. In order to achieve this aim, the following research methods are used: presentation of statistical data and statistical methods of research. The authors test the research hypothesis that the growth potential of textile industry enterprises is the largest in the most prosperous provinces.

Keywords

  • Attractiveness
  • textiles
  • industry
  • economics
Open Access

Comparative Study of Needle Penetration Forces in Sewing Hems on Toweling Terry Fabrics: Influence of Needle Type and Size

Published Online: 13 May 2020
Page range: 194 - 202

Abstract

Abstract

In this paper, an industrial case study comparing the use of different needles in the production of hems in towels is presented. The study aims to assess the sewability of the fabrics, quantified by needle penetration forces. The market offers an interesting range of options for the needle, regarding the geometry of the needle point, surface finishing, and sizes. However, in practice, the choice is difficult, namely due to the lack of quantitative data that may support the empirical evaluation made by the sewing technicians. The work aims to assess how the needle type and size relate to the resulting needle penetration forces. Three terry fabric structures, produced by a home textiles manufacturer, were tested using needles of different sizes, points, and coatings. Needle penetration forces were measured on a sewability tester prototype, previously designed and developed, based on an instrumented overedge sewing machine. It was found that needle penetration forces present very significant differences with small size increments, needle coating also influences forces significantly, and different needle points produce only slight differences, significant only on some of the fabrics that were tested.

Keywords

  • sewing
  • sewability
  • needle penetration forces
  • sewing needles
Open Access

Numerical and Experimental Comparative Analysis of Ballistic Performance of Packages Made of Biaxial and Triaxial Kevlar 29 Fabrics

Published Online: 13 May 2020
Page range: 203 - 219

Abstract

Abstract

The objective of this study is a comparative analysis of the ballistic effectiveness of packages made of biaxial and triaxial Kevlar 29 fabrics under the hitting of Parabellum 9×19 bullet. We conduct both numerical simulations using the LS-Dyna program and experimental research in a ballistic research laboratory. Based on the comparative analysis of the results from the numerical and experimental research, demonstrated differences exist in the ballistic effectiveness between the packages made of biaxial fabrics and the packages consisting of triaxial fabrics. For this purpose, the residual velocity of the bullet is analyzed in detail in terms of the maximum deformation cone, the shape of the deformation cone, and the distribution of stress for the textile ballistic packages. It is established that the packages made of triaxial fabric show a considerably smaller deformation cone compared with the packages made of biaxial fabric, a more favorable shape of the deformation cone from the perspective of ballistic trauma and distribution of stress similar to materials with isotropic properties. Poorer properties are recorded for these packages in the case of the minimum number of layers necessary for stopping the bullet, which arises from the open-work structure of the fabric.

Keywords

  • Triaxial fabric
  • biaxial fabric
  • Kevlar 29
  • ballistic packages
  • ballistic performance
  • finite element method
Open Access

Characterization of Fabric-to-Fabric Friction: Application to Medical Compression Bandages

Published Online: 13 May 2020
Page range: 220 - 227

Abstract

Abstract

Fabric-to-fabric friction is involved in the action mechanism of medical compression devices such as compression bandages or lumbar belts. To better understand the action of such devices, it is essential to characterize, in their use conditions (mainly pressure and stretch), the frictional properties of the fabrics they are composed of. A characterization method of fabric-to-fabric friction was developed. This method was based on the customization of the fourth instrument of the Kawabata Evaluation System, initially designed for fabric roughness and friction characterization. A friction contactor was developed so that the stretch of the fabric and the applied load can vary to replicate the use conditions. This methodology was implemented to measure the friction coefficient of several medical compression bandages. In the ranges of pressure and bandage stretch investigated in the study, bandage-to-bandage friction coefficient showed very little variation. This simple and reliable method, which was tested for commercially available medical compression bandages, could be used for other medical compression fabrics.

Keywords

  • Fabric friction
  • friction measurement
  • friction coefficient
  • medical compression bandages

Plan your remote conference with Sciendo