Issues

Journal & Issues

AHEAD OF PRINT

Volume 22 (2022): Issue 3 (September 2022)

Volume 22 (2022): Issue 2 (June 2022)

Volume 22 (2022): Issue 1 (March 2022)

Volume 21 (2021): Issue 4 (December 2021)

Volume 21 (2021): Issue 3 (September 2021)

Volume 21 (2021): Issue 2 (June 2021)

Volume 21 (2021): Issue 1 (March 2021)

Volume 20 (2020): Issue 4 (December 2020)

Volume 20 (2020): Issue 3 (September 2020)

Volume 20 (2020): Issue 2 (June 2020)

Volume 20 (2020): Issue 1 (March 2020)

Volume 19 (2019): Issue 4 (December 2019)

Volume 19 (2019): Issue 3 (September 2019)

Volume 19 (2019): Issue 2 (June 2019)

Volume 19 (2019): Issue 1 (March 2019)

Volume 18 (2018): Issue 4 (December 2018)

Volume 18 (2018): Issue 3 (September 2018)

Volume 18 (2018): Issue 2 (June 2018)

Volume 18 (2018): Issue 1 (March 2018)

Volume 17 (2017): Issue 4 (December 2017)

Volume 17 (2017): Issue 3 (September 2017)

Volume 17 (2017): Issue 2 (June 2017)

Volume 17 (2017): Issue 1 (March 2017)

Volume 16 (2016): Issue 4 (December 2016)

Volume 16 (2016): Issue 3 (September 2016)

Volume 16 (2016): Issue 2 (June 2016)

Volume 16 (2016): Issue 1 (March 2016)

Volume 15 (2015): Issue 4 (December 2015)

Volume 15 (2015): Issue 3 (September 2015)

Volume 15 (2015): Issue 2 (June 2015)

Volume 15 (2015): Issue 1 (March 2015)

Volume 14 (2014): Issue 4 (December 2014)

Volume 14 (2014): Issue 3 (September 2014)

Volume 14 (2014): Issue 2 (June 2014)

Volume 14 (2014): Issue 1 (March 2014)

Volume 13 (2013): Issue 4 (December 2013)

Volume 13 (2013): Issue 3 (September 2013)

Volume 13 (2013): Issue 2 (June 2013)

Volume 13 (2013): Issue 1 (March 2013)

Volume 12 (2012): Issue 4 (December 2012)

Volume 12 (2012): Issue 3 (September 2012)

Volume 12 (2012): Issue 2 (June 2012)

Volume 12 (2012): Issue 1 (March 2012)

Journal Details
Format
Journal
eISSN
2300-0929
First Published
19 Oct 2012
Publication timeframe
4 times per year
Languages
English

Search

Volume 16 (2016): Issue 3 (September 2016)

Journal Details
Format
Journal
eISSN
2300-0929
First Published
19 Oct 2012
Publication timeframe
4 times per year
Languages
English

Search

7 Articles
Open Access

Influence of Dry Cleaning on the Electrical Resistance of Screen Printed Conductors on Textiles

Published Online: 02 Aug 2016
Page range: 146 - 153

Abstract

Abstract

Electrically conducting inks were screen printed on various textile substrates. The samples were dry cleaned with the usual chemicals in order to investigate the influence of the mechanical treatment on the electrical conductivity. It was found that dry cleaning has a tremendous influence on this electrical conductivity. For several samples, it is observed that the electrical resistance increases with the square of the number of dry cleaning cycles. In order to explain this observation a theoretical model and a numerical simulation have been carried out, by assuming that dry cleaning cycles introduce a crack in the conducting layer. The theoretical analysis and the numerical analysis both confirmed the experimental observations.

Keywords

  • Screen-printed textile conductors
  • conductive ink
  • textile
  • dry cleaning
  • electrical resistance
Open Access

Investigation into the UV-Protection of Woven Fabrics Composed of Metallic Weft Yarns

Published Online: 02 Aug 2016
Page range: 154 - 159

Abstract

Abstract

The destructive effects of sun UV radiation on human skins are now very clear to everyone. Most of the present studies were focused on the fabrics’ structural parameters such as density, warp and weft yarns finenesses, fabric pattern and printing or finishing treatments applied to the fabrics. The aim of this work is achieving a technique through which the produced fabrics possess a higher UV-protection ability. For this purpose, two different metals including aluminium and copper yarns were employed in fabrics production process and their effects on UV-protection ability of the produced fabrics were investigated. Six different fabric samples comprised of either cotton/polyester, nylon yarns as the warp yarns as well as either aluminium or copper yarns as the weft yarns were produced. Using the spectrophotometer technique, which is known as one of the UPF measuring method, the absorbency and reflectivity of fabrics within the specified range of electromagnetic waves (specially the UV radiation) were determined. The results illustrated that the higher UV absorbency was related to the fabric possessing the copper yarns in their structures. It was concluded that the absorption ability of nylon fabrics is higher than that of the cotton/polyester samples.

Keywords

  • Woven fabric
  • Metallic yarns
  • UV protection
  • radiation energy
  • spectral irradiance
  • spectrophotometer
Open Access

Modelling the Effect of Weave Structure and Fabric Thread Density on Mechanical and Comfort Properties of Woven Fabrics

Published Online: 02 Aug 2016
Page range: 160 - 164

Abstract

Abstract

The paper investigates the effects of weave structure and fabric thread density on the comfort and mechanical properties of various test fabrics woven from polyester/cotton yarns. Three different weave structures, that is, 1/1 plain, 2/1 twill and 3/1 twill, and three different fabric densities were taken as input variables whereas air permeability, overall moisture management capacity, tensile strength and tear strength of fabrics were taken as response variables and a comparison is made of the effect of weave structure and fabric density on the response variables. The results of fabric samples were analysed in Minitab statistical software. The coefficients of determinations (R-sq values) of the regression equations show a good predictive ability of the developed statistical models. The findings of the study may be helpful in deciding appropriate manufacturing specifications of woven fabrics to attain specific comfort and mechanical properties.

Keywords

  • Comfort
  • mechanical properties
  • statistical model
  • weave structure
  • fabric density
Open Access

Thickness Optimisation of Textiles Subjected to Heat and Mass Transport during Ironing

Published Online: 02 Aug 2016
Page range: 165 - 174

Abstract

Abstract

Let us next analyse the coupled problem during ironing of textiles, that is, the heat is transported with mass whereas the mass transport with heat is negligible. It is necessary to define both physical and mathematical models. Introducing two-phase system of mass sorption by fibres, the transport equations are introduced and accompanied by the set of boundary and initial conditions. Optimisation of material thickness during ironing is gradient oriented. The first-order sensitivity of an arbitrary objective functional is analysed and included in optimisation procedure. Numerical example is the thickness optimisation of different textile materials in ironing device.

Keywords

  • heat and mass transport
  • thickness optimisation
  • ironing
Open Access

Simulations of Heat Transport Phenomena in a Three-Dimensional Model of Knitted Fabric

Published Online: 02 Aug 2016
Page range: 128 - 137

Abstract

Abstract

The main goal of the current work is to analyse the three-dimensional approach for modelling knitted fabric structures for future analysis of physical properties and thermal phenomena. The introduced model assumes some simplification of morphology. First, fibres in knitted fabrics are described as monofilaments characterized by isotropic thermal properties. The current form of the considered knitted fabric is determined by morphological properties of the used monofilament and simplification of the stitch shape. This simplification was based on a particular technology for the knitting process that introduces both geometric parameters and physical material properties. Detailed descriptions of heat transfer phenomena can also be considered. A sensitivity analysis of the temperature field with respect to selected structural parameters was also performed.

Keywords

  • Knitted fabric
  • simulation
  • heat transport phenomena
  • modelling
Open Access

Relationship between the Physical Properties and Hand of Jean Fabric

Published Online: 02 Aug 2016
Page range: 138 - 145

Abstract

Abstract

We investigated the distinctive characteristics of jean fabrics (denim fabrics obtained from jeans) and compared the physical properties and the hand. We used 13 kinds of jean fabric from commercial jeans and 26 other fabric types. The physical properties were measured using the Kawabata evaluation system, and the fabric hand was evaluated by 20 subjects using a semantic differential method. To characterise the hand of jean fabrics compared with other fabrics, we used principal component analysis and obtained three principal components. We found that jean fabrics were characterised by the second principal component, which was affected by feelings of thickness and weight. We further characterised the jean fabrics according to ‘softness & smoothness’ and ‘non-fullness’, depending on country of origin and type of manufacturer. The three principal components were analysed using multiple linear regression to characterise the components according to the physical properties. We explained the hand of fabrics including jean fabrics using its association with physical properties.

Keywords

  • Fabric
  • Hand
  • Tactile
  • Physical Property
  • Jeans
  • Denim
Open Access

PLA/PHA-Biodegradable Blends for Pneumothermic Fabrication of Nonwovens

Published Online: 02 Aug 2016
Page range: 119 - 127

Abstract

Abstract

This study presents the results of research concerning fabrication of nonwovens from biodegradable polymer blends using the melt-blown method. The experiments performed within the framework of the research confirmed the possibility of obtaining polymer composites based on polylactide (PLA) with poly(hydroxyalkanoates) (PHA) and another aliphatic-aromatic copolyester. The obtained products were subjected to the analyses of chemical structure using the Fourier Transform Infrared Spectroscopy(FTIR) Attenuated Total Reflectance(ATR) method. The physical and mechanical properties of the fabricated nonwoven layers were also tested, which confirmed a wide spectrum of their applicability, depending on the polymer composition used in production.

Keywords

  • Poly(hydroxyalkanoates) (PHA)
  • polylactide (PLA)
  • polymer composites
  • melt-blown nonwovens
7 Articles
Open Access

Influence of Dry Cleaning on the Electrical Resistance of Screen Printed Conductors on Textiles

Published Online: 02 Aug 2016
Page range: 146 - 153

Abstract

Abstract

Electrically conducting inks were screen printed on various textile substrates. The samples were dry cleaned with the usual chemicals in order to investigate the influence of the mechanical treatment on the electrical conductivity. It was found that dry cleaning has a tremendous influence on this electrical conductivity. For several samples, it is observed that the electrical resistance increases with the square of the number of dry cleaning cycles. In order to explain this observation a theoretical model and a numerical simulation have been carried out, by assuming that dry cleaning cycles introduce a crack in the conducting layer. The theoretical analysis and the numerical analysis both confirmed the experimental observations.

Keywords

  • Screen-printed textile conductors
  • conductive ink
  • textile
  • dry cleaning
  • electrical resistance
Open Access

Investigation into the UV-Protection of Woven Fabrics Composed of Metallic Weft Yarns

Published Online: 02 Aug 2016
Page range: 154 - 159

Abstract

Abstract

The destructive effects of sun UV radiation on human skins are now very clear to everyone. Most of the present studies were focused on the fabrics’ structural parameters such as density, warp and weft yarns finenesses, fabric pattern and printing or finishing treatments applied to the fabrics. The aim of this work is achieving a technique through which the produced fabrics possess a higher UV-protection ability. For this purpose, two different metals including aluminium and copper yarns were employed in fabrics production process and their effects on UV-protection ability of the produced fabrics were investigated. Six different fabric samples comprised of either cotton/polyester, nylon yarns as the warp yarns as well as either aluminium or copper yarns as the weft yarns were produced. Using the spectrophotometer technique, which is known as one of the UPF measuring method, the absorbency and reflectivity of fabrics within the specified range of electromagnetic waves (specially the UV radiation) were determined. The results illustrated that the higher UV absorbency was related to the fabric possessing the copper yarns in their structures. It was concluded that the absorption ability of nylon fabrics is higher than that of the cotton/polyester samples.

Keywords

  • Woven fabric
  • Metallic yarns
  • UV protection
  • radiation energy
  • spectral irradiance
  • spectrophotometer
Open Access

Modelling the Effect of Weave Structure and Fabric Thread Density on Mechanical and Comfort Properties of Woven Fabrics

Published Online: 02 Aug 2016
Page range: 160 - 164

Abstract

Abstract

The paper investigates the effects of weave structure and fabric thread density on the comfort and mechanical properties of various test fabrics woven from polyester/cotton yarns. Three different weave structures, that is, 1/1 plain, 2/1 twill and 3/1 twill, and three different fabric densities were taken as input variables whereas air permeability, overall moisture management capacity, tensile strength and tear strength of fabrics were taken as response variables and a comparison is made of the effect of weave structure and fabric density on the response variables. The results of fabric samples were analysed in Minitab statistical software. The coefficients of determinations (R-sq values) of the regression equations show a good predictive ability of the developed statistical models. The findings of the study may be helpful in deciding appropriate manufacturing specifications of woven fabrics to attain specific comfort and mechanical properties.

Keywords

  • Comfort
  • mechanical properties
  • statistical model
  • weave structure
  • fabric density
Open Access

Thickness Optimisation of Textiles Subjected to Heat and Mass Transport during Ironing

Published Online: 02 Aug 2016
Page range: 165 - 174

Abstract

Abstract

Let us next analyse the coupled problem during ironing of textiles, that is, the heat is transported with mass whereas the mass transport with heat is negligible. It is necessary to define both physical and mathematical models. Introducing two-phase system of mass sorption by fibres, the transport equations are introduced and accompanied by the set of boundary and initial conditions. Optimisation of material thickness during ironing is gradient oriented. The first-order sensitivity of an arbitrary objective functional is analysed and included in optimisation procedure. Numerical example is the thickness optimisation of different textile materials in ironing device.

Keywords

  • heat and mass transport
  • thickness optimisation
  • ironing
Open Access

Simulations of Heat Transport Phenomena in a Three-Dimensional Model of Knitted Fabric

Published Online: 02 Aug 2016
Page range: 128 - 137

Abstract

Abstract

The main goal of the current work is to analyse the three-dimensional approach for modelling knitted fabric structures for future analysis of physical properties and thermal phenomena. The introduced model assumes some simplification of morphology. First, fibres in knitted fabrics are described as monofilaments characterized by isotropic thermal properties. The current form of the considered knitted fabric is determined by morphological properties of the used monofilament and simplification of the stitch shape. This simplification was based on a particular technology for the knitting process that introduces both geometric parameters and physical material properties. Detailed descriptions of heat transfer phenomena can also be considered. A sensitivity analysis of the temperature field with respect to selected structural parameters was also performed.

Keywords

  • Knitted fabric
  • simulation
  • heat transport phenomena
  • modelling
Open Access

Relationship between the Physical Properties and Hand of Jean Fabric

Published Online: 02 Aug 2016
Page range: 138 - 145

Abstract

Abstract

We investigated the distinctive characteristics of jean fabrics (denim fabrics obtained from jeans) and compared the physical properties and the hand. We used 13 kinds of jean fabric from commercial jeans and 26 other fabric types. The physical properties were measured using the Kawabata evaluation system, and the fabric hand was evaluated by 20 subjects using a semantic differential method. To characterise the hand of jean fabrics compared with other fabrics, we used principal component analysis and obtained three principal components. We found that jean fabrics were characterised by the second principal component, which was affected by feelings of thickness and weight. We further characterised the jean fabrics according to ‘softness & smoothness’ and ‘non-fullness’, depending on country of origin and type of manufacturer. The three principal components were analysed using multiple linear regression to characterise the components according to the physical properties. We explained the hand of fabrics including jean fabrics using its association with physical properties.

Keywords

  • Fabric
  • Hand
  • Tactile
  • Physical Property
  • Jeans
  • Denim
Open Access

PLA/PHA-Biodegradable Blends for Pneumothermic Fabrication of Nonwovens

Published Online: 02 Aug 2016
Page range: 119 - 127

Abstract

Abstract

This study presents the results of research concerning fabrication of nonwovens from biodegradable polymer blends using the melt-blown method. The experiments performed within the framework of the research confirmed the possibility of obtaining polymer composites based on polylactide (PLA) with poly(hydroxyalkanoates) (PHA) and another aliphatic-aromatic copolyester. The obtained products were subjected to the analyses of chemical structure using the Fourier Transform Infrared Spectroscopy(FTIR) Attenuated Total Reflectance(ATR) method. The physical and mechanical properties of the fabricated nonwoven layers were also tested, which confirmed a wide spectrum of their applicability, depending on the polymer composition used in production.

Keywords

  • Poly(hydroxyalkanoates) (PHA)
  • polylactide (PLA)
  • polymer composites
  • melt-blown nonwovens

Plan your remote conference with Sciendo