Magazine et Edition

Volume 12 (2022): Edition 3 (July 2022)

Volume 12 (2022): Edition 2 (April 2022)

Volume 12 (2022): Edition 1 (January 2022)

Volume 11 (2021): Edition 4 (October 2021)

Volume 11 (2021): Edition 3 (July 2021)

Volume 11 (2021): Edition 2 (April 2021)

Volume 11 (2021): Edition 1 (January 2021)

Volume 10 (2020): Edition 4 (October 2020)

Volume 10 (2020): Edition 3 (July 2020)

Volume 10 (2020): Edition 2 (April 2020)

Volume 10 (2020): Edition 1 (January 2020)

Volume 9 (2019): Edition 4 (October 2019)

Volume 9 (2019): Edition 3 (July 2019)

Volume 9 (2019): Edition 2 (April 2019)

Volume 9 (2019): Edition 1 (January 2019)

Volume 8 (2018): Edition 4 (October 2018)

Volume 8 (2018): Edition 3 (July 2018)

Volume 8 (2018): Edition 2 (April 2018)

Volume 8 (2018): Edition 1 (January 2018)

Volume 7 (2017): Edition 4 (October 2017)

Volume 7 (2017): Edition 3 (July 2017)

Volume 7 (2017): Edition 2 (April 2017)

Volume 7 (2017): Edition 1 (January 2017)

Volume 6 (2016): Edition 4 (October 2016)

Volume 6 (2016): Edition 3 (July 2016)

Volume 6 (2016): Edition 2 (April 2016)

Volume 6 (2016): Edition 1 (January 2016)

Volume 5 (2015): Edition 4 (October 2015)

Volume 5 (2015): Edition 3 (July 2015)

Volume 5 (2015): Edition 2 (April 2015)

Volume 5 (2015): Edition 1 (January 2015)

Volume 4 (2014): Edition 4 (October 2014)

Volume 4 (2014): Edition 3 (July 2014)

Volume 4 (2014): Edition 2 (April 2014)

Volume 4 (2014): Edition 1 (January 2014)

Volume 3 (2013): Edition 4 (October 2013)

Volume 3 (2013): Edition 3 (July 2013)

Volume 3 (2013): Edition 2 (April 2013)

Volume 3 (2013): Edition 1 (January 2013)

Détails du magazine
Format
Magazine
eISSN
2449-6499
Première publication
30 Dec 2014
Période de publication
4 fois par an
Langues
Anglais

Chercher

Volume 4 (2014): Edition 4 (October 2014)

Détails du magazine
Format
Magazine
eISSN
2449-6499
Première publication
30 Dec 2014
Période de publication
4 fois par an
Langues
Anglais

Chercher

5 Articles
access type Accès libre

Flatness-Based Adaptive Fuzzy Control Of Spark-Ignited Engines

Publié en ligne: 01 Mar 2015
Pages: 231 - 242

Résumé

Abstract

An adaptive fuzzy controller is designed for spark-ignited (SI) engines, under the constraint that the system's model is unknown. The control algorithm aims at satisfying the H tracking performance criterion, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. After transforming the SI-engine model into the canonical form, the resulting control inputs are shown to contain nonlinear elements which depend on the system's parameters. The nonlinear terms which appear in the control inputs are approximated with the use of neuro-fuzzy networks. It is shown that a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed adaptive fuzzy control scheme results in H tracking performance. The efficiency of the proposed adaptive fuzzy control scheme is checked through simulation experiments.

access type Accès libre

Temporal Analysis Of Adaptive Face Recognition

Publié en ligne: 01 Mar 2015
Pages: 243 - 255

Résumé

Abstract

Aging has profound effects on facial biometrics as it causes change in shape and texture. However, aging remains an under-studied problem in comparison to facial variations due to pose, illumination and expression changes. A commonly adopted solution in the state-of-the-art is the virtual template synthesis for aging and de-aging transformations involving complex 3D modelling techniques. These methods are also prone to estimation errors in the synthesis. Another viable solution is to continuously adapt the template to the temporal variation (ageing) of the query data. Though efficacy of template update procedures has been proven for expression, lightning and pose variations, the use of template update for facial aging has not received much attention so far. Therefore, this paper first analyzes the performance of existing baseline facial representations, based on local features, under ageing effect then investigates the use of template update procedures for temporal variance due to the facial age progression process. Experimental results on FGNET and MORPH aging database using commercial VeriLook face recognition engine demonstrate that continuous template updating is an effective and simple way to adapt to variations due to the aging process.

access type Accès libre

A Parametric Testing Of The Firefly Algorithm In The Determination Of The Optimal Osmotic Drying Parameters Of Mushrooms

Publié en ligne: 01 Mar 2015
Pages: 257 - 266

Résumé

Abstract

The Firefly Algorithm (FA) is employed to determine the optimal parameter settings in a case study of the osmotic dehydration process of mushrooms. In the case, the functional form of the dehydration model is established through a response surface technique and the resulting mathematical programming is formulated as a non-linear goal programming model. For optimization purposes, a computationally efficient, FA-driven method is used and the resulting optimal process parameters are shown to be superior to those from previous approaches. The final section of this study provides a computational experimentation performed on the FA to analyze its relative sensitivity over a range of the two key parameters that most influence its running time.

access type Accès libre

Realtime Motion Assessment For Rehabilitation Exercises: Integration Of Kinematic Modeling With Fuzzy Inference

Publié en ligne: 01 Mar 2015
Pages: 267 - 285

Résumé

Abstract

This article describes a novel approach to realtime motion assessment for rehabilitation exercises based on the integration of comprehensive kinematic modeling with fuzzy inference. To facilitate the assessment of all important aspects of a rehabilitation exercise, a kinematic model is developed to capture the essential requirements for static poses, dynamic movements, as well as the invariance that must be observed during an exercise. The kinematic model is expressed in terms of a set of kinematic rules. During the actual execution of a rehabilitation exercise, the similarity between the measured motion data and the model is computed in terms of their distances, which are then used as inputs to a fuzzy interference system to derive the overall quality of the execution. The integrated approach provides both a detailed categorical assessment of the overall execution of the exercise and the degree of adherence to individual kinematic rules.

access type Accès libre

A Priori Approach Of Real-Time Ridesharing Problem With Intermediate Meeting Locations

Publié en ligne: 01 Mar 2015
Pages: 287 - 299

Résumé

Abstract

Ridesharing is a mobility concept in which a trip is shared by a vehicle’s driver and one or more passengers called riders. Ridesharing is considered as a more environmentally friendly alternative to single driver commutes in pollution-creating vehicles on overcrowded streets. In this paper, we present the core of a new strategy of the ridesharing system, making it more flexible and competitive than the recurring system. More precisely, we allow the driver and the rider to meet each other at an intermediate starting location and to separate at another intermediate ending location not necessarily their origins and destinations, respectively. This allows to reduce both the driver’s detour and the total travel cost. The term “A priori approach” means that the driver sets the sharing cost rate on the common path with rider in advance. An exact and heuristic approaches to identify meeting locations, while minimizing the total travel cost of both driver and rider are proposed. Finally, we analyze their empirical performance on a set of real road networks consisting of up to 3,5 million nodes and 8,7 million edges. Our experimental results show that our heuristics provide efficient performances within short CPU times and improves the recurring ridesharing approach in terms of cost-savings.

5 Articles
access type Accès libre

Flatness-Based Adaptive Fuzzy Control Of Spark-Ignited Engines

Publié en ligne: 01 Mar 2015
Pages: 231 - 242

Résumé

Abstract

An adaptive fuzzy controller is designed for spark-ignited (SI) engines, under the constraint that the system's model is unknown. The control algorithm aims at satisfying the H tracking performance criterion, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. After transforming the SI-engine model into the canonical form, the resulting control inputs are shown to contain nonlinear elements which depend on the system's parameters. The nonlinear terms which appear in the control inputs are approximated with the use of neuro-fuzzy networks. It is shown that a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed adaptive fuzzy control scheme results in H tracking performance. The efficiency of the proposed adaptive fuzzy control scheme is checked through simulation experiments.

access type Accès libre

Temporal Analysis Of Adaptive Face Recognition

Publié en ligne: 01 Mar 2015
Pages: 243 - 255

Résumé

Abstract

Aging has profound effects on facial biometrics as it causes change in shape and texture. However, aging remains an under-studied problem in comparison to facial variations due to pose, illumination and expression changes. A commonly adopted solution in the state-of-the-art is the virtual template synthesis for aging and de-aging transformations involving complex 3D modelling techniques. These methods are also prone to estimation errors in the synthesis. Another viable solution is to continuously adapt the template to the temporal variation (ageing) of the query data. Though efficacy of template update procedures has been proven for expression, lightning and pose variations, the use of template update for facial aging has not received much attention so far. Therefore, this paper first analyzes the performance of existing baseline facial representations, based on local features, under ageing effect then investigates the use of template update procedures for temporal variance due to the facial age progression process. Experimental results on FGNET and MORPH aging database using commercial VeriLook face recognition engine demonstrate that continuous template updating is an effective and simple way to adapt to variations due to the aging process.

access type Accès libre

A Parametric Testing Of The Firefly Algorithm In The Determination Of The Optimal Osmotic Drying Parameters Of Mushrooms

Publié en ligne: 01 Mar 2015
Pages: 257 - 266

Résumé

Abstract

The Firefly Algorithm (FA) is employed to determine the optimal parameter settings in a case study of the osmotic dehydration process of mushrooms. In the case, the functional form of the dehydration model is established through a response surface technique and the resulting mathematical programming is formulated as a non-linear goal programming model. For optimization purposes, a computationally efficient, FA-driven method is used and the resulting optimal process parameters are shown to be superior to those from previous approaches. The final section of this study provides a computational experimentation performed on the FA to analyze its relative sensitivity over a range of the two key parameters that most influence its running time.

access type Accès libre

Realtime Motion Assessment For Rehabilitation Exercises: Integration Of Kinematic Modeling With Fuzzy Inference

Publié en ligne: 01 Mar 2015
Pages: 267 - 285

Résumé

Abstract

This article describes a novel approach to realtime motion assessment for rehabilitation exercises based on the integration of comprehensive kinematic modeling with fuzzy inference. To facilitate the assessment of all important aspects of a rehabilitation exercise, a kinematic model is developed to capture the essential requirements for static poses, dynamic movements, as well as the invariance that must be observed during an exercise. The kinematic model is expressed in terms of a set of kinematic rules. During the actual execution of a rehabilitation exercise, the similarity between the measured motion data and the model is computed in terms of their distances, which are then used as inputs to a fuzzy interference system to derive the overall quality of the execution. The integrated approach provides both a detailed categorical assessment of the overall execution of the exercise and the degree of adherence to individual kinematic rules.

access type Accès libre

A Priori Approach Of Real-Time Ridesharing Problem With Intermediate Meeting Locations

Publié en ligne: 01 Mar 2015
Pages: 287 - 299

Résumé

Abstract

Ridesharing is a mobility concept in which a trip is shared by a vehicle’s driver and one or more passengers called riders. Ridesharing is considered as a more environmentally friendly alternative to single driver commutes in pollution-creating vehicles on overcrowded streets. In this paper, we present the core of a new strategy of the ridesharing system, making it more flexible and competitive than the recurring system. More precisely, we allow the driver and the rider to meet each other at an intermediate starting location and to separate at another intermediate ending location not necessarily their origins and destinations, respectively. This allows to reduce both the driver’s detour and the total travel cost. The term “A priori approach” means that the driver sets the sharing cost rate on the common path with rider in advance. An exact and heuristic approaches to identify meeting locations, while minimizing the total travel cost of both driver and rider are proposed. Finally, we analyze their empirical performance on a set of real road networks consisting of up to 3,5 million nodes and 8,7 million edges. Our experimental results show that our heuristics provide efficient performances within short CPU times and improves the recurring ridesharing approach in terms of cost-savings.

Planifiez votre conférence à distance avec Sciendo