Accès libre

A novel modeling approach for finite element human body models with high computational efficiency and stability: application in pedestrian safety analysis

, , ,  et   
02 mai 2021
À propos de cet article

Citez
Télécharger la couverture

C-NCAP. C-NCAP Management Regulation (2021 Version), China New Car Assessment Programme, China Automotive Technology and Research Center, 2020. Search in Google Scholar

Euro-NCAP, Assessment Protocol-Vulnerable Road User Protection, Version 10.0.3, European New Car Assessment Programme, 2020. Search in Google Scholar

Gehre G., Gades H., Wernicke P., Objective rating of signals using test and simulation responses, Proceedings of the 21st International Conference on the Enhanced Safety of Vehicles (ESV), Stuttgart, Germany, 2009. Search in Google Scholar

He Q., Feng J., Zhou H., Tian G., Numerical study on the dynamic behavior of circular honeycomb structure with concentrated filling inclusions defects, J. Mech. Sci. Technol., 2018, 32 (8), 3727–3735. Search in Google Scholar

Ivarsson B., Lessley D., Kerrigan J., Bhalla K., Bose D., Crandall J., Kent R., Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities. Proceedings of International Research Council on Biomechanics of Injury (IRCOBI) Conference, Graz, Austria, 2004. Search in Google Scholar

Kerrigan J., Drinkwater D., Kam C., Murphy D., Ivarsson B., Crandall J., Patrie J., Tolerance of the human leg and thigh in dynamic latero-medial bending, Int. J. Crashworthiness, 2004, 9 (6), 607–623. Search in Google Scholar

Kerrigan J., Murphy D., D Drinkwater., Kam C., Bose D., Crandall J., Kinematic corridors for PMHS tested in fullscale pedestrian impact tests. Proceedings of the 19th International Technical Conference of Enhanced Safety of Vehicles (ESV), Washington D.C., USA, 2005. Search in Google Scholar

Koh S., Cavanaugh J., Mason M., Petersen S., Bolte J., Shoulder injury and response due to lateral glenohumeral joint impact: An analysis of combined data, Stapp Car Crash J., 2005, 49, 291–322. Search in Google Scholar

Li G., Ma H., Guan T., Gao G., Predicting safer vehicle front-end shapes for pedestrian lower limb protection via a numerical optimization framework, Int. J. Auto. Tech.-Kor., 2020, 21 (3), 749–756. Search in Google Scholar

Li G., Tan Z., Lv X., Ren L., A computationally efficient finite element pedestrian model for head safety: Development and validation, Appl. Bionics Biomech., 2019a, 4930803. Search in Google Scholar

Li G., Tan Z., Lv X., Ren L., Numerical reconstruction of injuries in a real world minivan-to-pedestrian collision, Acta Bioeng. Biomech., 2019, 21 (2), 21–30. Search in Google Scholar

Li G., Wang F., Otte D., Cai Z., Simms C., Have pedestrian subsystem tests improved passenger car front shape?, Accid. Anal. Prev., 2018, 115, 143–150. Search in Google Scholar

Li G., Wang F., Otte D., Simms C., Characteristics of pedestrian head injuries observed from real world collision data, Accid. Anal. Prev., 2019c, 129, 362–366. Search in Google Scholar

Luo H., Chen F., Wang X., Dai W., Xiong Y., Yang J., Goog R., A novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption, Compos. Part A-Appl. S., 2019, 119, 1–7. Search in Google Scholar

LSTC. LS-DYNA keyword user’s manual, version 971. Livermore Software Technology Corporation Livermore, United States of America, 2007. Search in Google Scholar

Mo F., Li F., Behr M., Xiao Z., Zhang G., Du X., A lower limb-pelvis finite element model with 3D active muscles, Ann. Biomed. Eng., 2018, 46 (1), 86–96. Search in Google Scholar

Mo F., Zheng Z., Zhang H., Li G., Sun D., In vitro compressive properties of skeletal muscles and inverse finite element analysis: comparison of human versus animals, J. Biomech., 2020, 109, 109916. Search in Google Scholar

Nie J., Li G., Yang J., A study of fatality risk and head dynamic response of cyclist and pedestrian based on passenger car accident data analysis and simulations, Traffic Inj. Prev., 2015, 16 (1), 76–83. Search in Google Scholar

Strandroth J., Sternlund S., Lie A., Tingvall C., Rizzi M., Kullgren A., Ohlin M., Fredriksson R., Correlation between Euro-NCAP pedestrian test results and injury severity in injury crashes with pedestrians and bicyclists in Sweden, Stapp Car Crash J., 2014, 58, 213–231. Search in Google Scholar

Takhounts E., Craig M., Moorhouse K., McFadden J., Hasija V., Development of brain injury criteria (BrIC), Stapp Car Crash J., 2013, 57, 243–266. Search in Google Scholar

Toyota Motor Corporation. Documentation: Total Human Model for Safety (THUMS) AM50 Pedestrian/Occupant Model Academic Version 4.02_20150527, Toyota Center R & D Labs., Inc, 2015. Search in Google Scholar

Untaroiu C., Shin J., Crandall J., Rikard F., Bostrom O., Takahashi Y., Akiyama A., Development and validation of pedestrian sedan bucks using finite-element simulations: A numerical investigation of the influence of vehicle automatic braking on the kinematics of the pedestrian involved in vehicle collisions, Int. J. Crashworthiness, 2010, 15 (5), 491–503. Search in Google Scholar

Untaroiu C., Pak W., Meng Y., Schap J., Gayzik F., A finite element model of a midsize male for simulating pedestrian accidents, J. Biomech. Eng.-T. ASME, 2017, 140 (1), 011003. Search in Google Scholar

Untaroiu C., Yue N., Shin J., A finite element model of the lower limb for simulating automotive impacts, Ann. Biomed. Eng., 2012, 41, 1–14. Search in Google Scholar

Vavalle N., Moreno D., Rhyne A., Stitzel J., Gayzik F., Lateral impact validation of a geometrically accurate full body finite element model for blunt injury prediction, Ann. Biomed. Eng., 2013, 41, 497–512. Search in Google Scholar

Viano D., Biomechanical responses and injuries in blunt lateral impact, SAE Technical Paper No. 892432, 1989. Search in Google Scholar

Wang F., Han Y., Wang B., Peng Q., Huang X., Miller K., Wittek A., Prediction of brain deformations and risk of raumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model, Biomech. Model. Mechan., 2018, 17, 1165–1185. Search in Google Scholar

Wang F., Yu C., Wang B., Li G., Miller K., Wittek A., Prediction of pedestrian brain injury due to vehicle impact using computational biomechanics models: Are head-only models sufficient?, Traffic Inj. Prev., 2020, 21 (1), 102–107. Search in Google Scholar

WHO, Global Status Report on Road Safety, World Health Organization, Geneva, Switzerland, 2015. Search in Google Scholar

Wu T., Kim T., Bollapragada V., Poulard D., Chen H., Evaluation of biofidelity of THUMS pedestrian model under a whole-body impact conditions with a generic sedan buck. Traffic Inj. Prev., 2017, 18, S148–S154. Search in Google Scholar

Yang K., Basic Finite Element Method as Applied to Injury Biomechanics, Elsevier, 2018. Search in Google Scholar

Yang K., Hu J., White N., King A., Chou C., Prasad P., Development of numerical models for injury biomechanics research: A review of 50 years of publications in the Stapp Car Crash conference, Stapp Car Crash J., 2006, 50, 429–490. Search in Google Scholar

Yu C., Wang F., Wang B., Li G., Li F., A computational biomechanics human body model coupling finite element and multibody segments for assessment of head/brain injuries in car-to-pedestrian collisions, Int. J. Env. Res. Pub. He., 2020, 17 (2), 492. Search in Google Scholar