1. bookVolume 132 (2022): Edition 1 (January 2022)
Détails du magazine
License
Format
Magazine
eISSN
2083-4829
Première parution
23 Apr 2014
Périodicité
1 fois par an
Langues
Anglais
Accès libre

Urban air pollution and emergency department visits for influenza

Publié en ligne: 31 Dec 2022
Volume & Edition: Volume 132 (2022) - Edition 1 (January 2022)
Pages: 73 - 79
Détails du magazine
License
Format
Magazine
eISSN
2083-4829
Première parution
23 Apr 2014
Périodicité
1 fois par an
Langues
Anglais

1. Burbank AJ, Peden DB. Assessing the impact of air pollution on childhood asthma morbidity: how, when, and what to do. Curr Opin Allergy Clin Immunol. 2018;18(2):124-31.10.1097/ACI.0000000000000422601637029493555 Search in Google Scholar

2. Burnett R, Chen H, Szyszkowicz M, et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci USA. 2018;115(38):9592-7.10.1073/pnas.1803222115615662830181279 Search in Google Scholar

3. Szyszkowicz M, Thomson EM, Colman I, Rowe BH. Ambient air pollution exposure and emergency department visits for substance abuse. PLoS One. 2018;13(6):e0199826.10.1371/journal.pone.0199826602586829958279 Search in Google Scholar

4. Thomson EM. Air Pollution, Stress, and allostatic load: Linking Systemic and Central Nervous System Impacts. J Alzheimers Dis. 2019;69(3):597-614.10.3233/JAD-190015659800231127781 Search in Google Scholar

5. Ciencewicki J, Jaspers I. Air pollution and respiratory viral infection. Inhal Toxicol. 2007;19(14):1135-46.10.1080/0895837070166543417987465 Search in Google Scholar

6. Glencross DA, Ho TR, Camiña N, et al. Air pollution and its effects on the immune system. Free Radic Biol Med. 2020;151:56-68.10.1016/j.freeradbiomed.2020.01.17932007522 Search in Google Scholar

7. Jiang C, Yao X, Zhao Y, et al. Comparative review of respiratory diseases caused by coronaviruses and influenza A viruses during epidemic season. Microbes Infect. 2020;22(6-7):236-44.10.1016/j.micinf.2020.05.005721778632405236 Search in Google Scholar

8. NACRS. The National Ambulatory Care Reporting System, CIHI, Canada; 2020. [https://www.cihi.ca/en/national-ambulatory-care-reporting-system-metadata.] Search in Google Scholar

9. NAPS; 2020. [http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx, Canada.] Search in Google Scholar

10. Vicedo-Cabrera AM, Sera F, Liu C, et al. Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countries. BMJ. 2020;368:m108.10.1136/bmj.m108719003532041707 Search in Google Scholar

11. Szyszkowicz M. Rapid response to: Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countries. BMJ. 2020;368. [https://www.bmj.com/content/368/bmj.m108/rr-1] Search in Google Scholar

12. Stieb DM, Burnett RT, Smith-Doiron M, et al. A new multipollutant, no-threshold air quality health index based on short-term associations observed in daily time-series analyses. J Air Waste Manag Assoc. 2008;58(3):435-50.10.3155/1047-3289.58.3.43518376646 Search in Google Scholar

13. Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol. 1991;133(2):144-53.10.1093/oxfordjournals.aje.a1158531985444 Search in Google Scholar

14. Janes H, Sheppard L, Lumley T. Case-crossover analyses of air pollution exposure data: referent selection strategies and their implications for bias. Epidemiology. 2005;16(6):717-26.10.1097/01.ede.0000181315.18836.9d16222160 Search in Google Scholar

15. Szyszkowicz M. Use of generalized linear mixed models to examine the association between air pollution and health outcomes. Int J Occup Med Environ Health. 2006;19:224-7.10.2478/v10001-006-0032-717402217 Search in Google Scholar

16. Szyszkowicz M. Case-Crossover method with a short time-window. Int J Environ Res Public Health. 2019;17(1):202.10.3390/ijerph17010202698183631892178 Search in Google Scholar

17. Szyszkowicz M. Use of two-point models in “Model choice in time-series studies of air pollution and mortality”. Air Quality Atmosphere Health. 2020;13:225-32.10.1007/s11869-019-00787-5 Search in Google Scholar

18. Szyszkowicz M. The Air Quality Health Index and all emergency department visits. Environ Sci Pollut Res Int. 2019;26(24) :24357-61.10.1007/s11356-019-05741-731230243 Search in Google Scholar

19. Szyszkowicz M, Rowe BH. Respiratory health conditions and ambient ozone: a case-crossover study. Insights Chest Dis. 2016;1:9. Search in Google Scholar

20. Armstrong BG, Gasparrini A, Tobias A. Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis. BMC Med Res Methodol. 2014;14:122.10.1186/1471-2288-14-122428068625417555 Search in Google Scholar

21. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2018. [https://www.R-project.org/.] Search in Google Scholar

22. Domingo JL, Rovira J. Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ Res. 2020;187:109650.10.1016/j.envres.2020.109650721163932416357 Search in Google Scholar

23. Acton JD, Myrvik QN. Nitrogen dioxide effects on alveolar macrophages. Arch Environ Health. 1972;24(1):48-52.10.1080/00039896.1972.106660494333232 Search in Google Scholar

24. Kulle TJ, Clements ML. Susceptibility to virus infection with exposure to nitrogen dioxide. Res Rep Health Eff Inst. 1988;(15):5-21. Search in Google Scholar

25. Lin YK, Chang CK, Chang SC, et al. Temperature, nitrogen dioxide, circulating respiratory viruses and acute upper respiratory infections among children in Taipei, Taiwan: a population-based study. Environ Res. 2013;120:109-18.10.1016/j.envres.2012.09.002712704223040210 Search in Google Scholar

26. Frampton MW, Smeglin AM, Roberts NJ Jr, et al. Nitrogen dioxide exposure in vivo and human alveolar macrophage inactivation of influenza virus in vitro. Environ Res. 1989;48(2):179-92.10.1016/S0013-9351(89)80033-72784382 Search in Google Scholar

27. Mäkinen TM, Juvonen R, Jokelainen J, et al. Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections. Respir Med. 2009;103(3):456-62.10.1016/j.rmed.2008.09.01118977127 Search in Google Scholar

28. Xing YF, Xu YH, Shi MH, Lian YX. The impact of PM2.5 on the human respiratory system. J Thorac Dis. 2016;8(1):E69-74. Search in Google Scholar

29. Lessler J, Reich NG, Brookmeyer R, et al. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis. 2009;9(5):291-300.10.1016/S1473-3099(09)70069-6432789319393959 Search in Google Scholar

30. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann Intern Med. 2020;172(9):577-82.10.7326/M20-0504708117232150748 Search in Google Scholar

31. Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. 2020;582(7813):557-60.10.1038/s41586-020-2271-332340022 Search in Google Scholar

32. Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J Infect. 2020;80(6):e14-e18.10.1016/j.jinf.2020.03.005710264032171866 Search in Google Scholar

33. Yu IT, Li Y, Wong TW, et al. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med. 2004;350(17):1731-9.10.1056/NEJMoa03286715102999 Search in Google Scholar

34. Herfst S, Schrauwen EJ, Linster M, et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012;336(6088):1534-41.10.1126/science.1213362481078622723413 Search in Google Scholar

35. Blachere FM, Lindsley WG, Pearce TA, et al. Measurement of airborne influenza virus in a hospital emergency department. Clin Infect Dis. 2009;48(4):438-40.10.1086/59647819133798 Search in Google Scholar

36. Dowd JB, Andriano L, Brazel DM, et al. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proc Natl Acad Sci USA. 2020;117(18):9696-8.10.1073/pnas.2004911117721193432300018 Search in Google Scholar

37. Caini S, Spreeuwenberg P, Kusznierz GF, et al. Global Influenza B Study group. Distribution of influenza virus types by age using case-based global surveillance data from twenty-nine countries, 1999-2014. BMC Infect Dis. 2018;18(1):269.10.1186/s12879-018-3181-y599406129884140 Search in Google Scholar

38. MacNee W. Oxidative stress and lung inflammation in airways disease. Eur J Pharmacol. 2001;429(1-3):195-207.10.1016/S0014-2999(01)01320-6 Search in Google Scholar

39. Imai Y, Kuba K, Neely GG, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133(2):235-49.10.1016/j.cell.2008.02.043711233618423196 Search in Google Scholar

40. Wang G, Bates-Kenney SR, Tao JQ, et al. Differences in biochemical properties and in biological function between human SP-A1 and SPA2 variants, and the impact of ozone-induced oxidation. Biochemistry. 2004;43(14):4227-39.10.1021/bi036023i15065867 Search in Google Scholar

41. Ma JH, Song SH, Guo M, et al. Long-term exposure to PM2.5 lowers influenza virus resistance via down-regulating pulmonary macrophage Kdm6a and mediates histones modification in IL-6 and IFN-ß promoter regions. Biochem Biophys Res Commun. 2017;493(2):1122-8.10.1016/j.bbrc.2017.09.01328887033 Search in Google Scholar

42. Feng C, Li J, Sun W, et al. Impact of ambient fine particulate matter (PM2.5) exposure on the risk of influenza-like-illness: a time-series analysis in Beijing, China. Environ Health. 2016;15:17.10.1186/s12940-016-0115-2475035726864833 Search in Google Scholar

43. He M, Ichinose T, Yoshida S, et al. PM2.5-induced lung inflammation in mice: Differences of inflammatory response in macrophages and type II alveolar cells. J Appl Toxicol. 2017;37(10):1203-18.10.1002/jat.348228555929 Search in Google Scholar

44. Su W, Wu X, Geng X, et al. The short-term effects of air pollutants on influenza-like illness in Jinan, China. BMC Public Health. 2019;19(1):1319.10.1186/s12889-019-7607-2680562731638933 Search in Google Scholar

45. Mikerov AN, Umstead TM, Gan X, et al. Impact of ozone exposure on the phagocytic activity of human surfactant protein A (SP-A) and SP-A variants. Am J Physiol Lung Cell Mol Physiol. 2008;294(1):L121-30.10.1152/ajplung.00288.2007296466717981957 Search in Google Scholar

46. Chroneos ZC, Sever-Chroneos Z, Shepherd VL. Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem. 2010;25(1):13-26.10.1159/000272047302588620054141 Search in Google Scholar

47. Anderson SE, Fisher M, Khakoo R, et al. Measurement of airborne influenza virus in a hospital emergency department. Clin Infect Dis. 2009;48(4):438-40.10.1086/59647819133798 Search in Google Scholar

Articles recommandés par Trend MD