1. bookVolume 29 (2023): Edition 1 (March 2023)
Détails du magazine
Première parution
30 Dec 2008
4 fois par an
Accès libre

Non-invasive method for blood glucose monitoring using ECG signal

Publié en ligne: 01 Feb 2023
Volume & Edition: Volume 29 (2023) - Edition 1 (March 2023)
Pages: 1 - 9
Reçu: 05 Jun 2022
Accepté: 28 Dec 2022
Détails du magazine
Première parution
30 Dec 2008
4 fois par an

1. L’ATLAS DU DIABÈTE DE LA FID; 9ème Édition 2019. Federation internationale du diabete, 2019. https://www.diabete.qc.ca/fr/comprendre-le-diabete/ressources/documents-utiles/atlas/ Search in Google Scholar

2. Près de 9 millions d’Algériens diabétiques d’ici à 20 ans. https://www.algerie360.com/pres-de-9-millions-dalgeriens-diabetiques-dicia-20-ans/ (acceding 10/12/2020) Search in Google Scholar

3. The Diabetes Control Complications Trial/Epidemiology of Diabetes Interventions and Complications DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Eng J Med. 2005;353(25):2643-2653. https://doi.org/10.1056/nejmoa05218710.1056/NEJMoa052187263799116371630 Search in Google Scholar

4. Freeman R. Hypoglycemia and the Autonomic Nervous System. In: Veves, A., Malik, R.A. (eds) Diabetic Neuropathy. Clinical Diabetes. Humana Press; 2007. https://doi.org/10.1007/978-1-59745-311-0_2310.1007/978-1-59745-311-0_23 Search in Google Scholar

5. Chen C, Zhao XL, Li ZH, et al. Current and Emerging Technology for Continuous Glucose Monitoring. Sensors. 2017;17(1):182. https://doi.org/10.3390/s1701018210.3390/s17010182529875528106820 Search in Google Scholar

6. Wagner J, Malchof C, Abbott G. Invasiveness as a barrier to self-monitoring of blood glucose in diabetes. Diabetes Technol Ther. 2005;(4):612-619. https://doi.org/10.1089/dia.2005.7.61210.1089/dia.2005.7.61216120035 Search in Google Scholar

7. Allen N, Gupta A. Current Diabetes Technology: Striving for the Artificial Pancreas. Diagnostics. 2019;9(1):31. https://doi.org/10.3390/diagnostics901003110.3390/diagnostics9010031646852330875898 Search in Google Scholar

8. Ajjan RA, Cummings MH, Jennings P, et al. Accuracy of flash glucose monitoring and continuous glucose monitoring technologies: Implications for clinical practice. Diab Vasc Dis Res. 2018;15(3):175-184. https://doi.org/10.1177/147916411875624010.1177/147916411875624029446646 Search in Google Scholar

9. Fokkert M J, van Dijk PR, Edens MA, et al. Performance of the FreeStyle Libre Flash glucose monitoring system in patients with type 1 and 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2017;5(1):e000320. https://doi.org/10.1136/bmjdrc-2016-00032010.1136/bmjdrc-2016-000320531691228243449 Search in Google Scholar

10. Villena Gonzales W, Mobashsher A, Abbosh A. The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors. 2019;19(4):800. https://doi.org/10.3390/s1904080010.3390/s19040800641270130781431 Search in Google Scholar

11. Vigersky RA. The benefits, limitations, and cost-effectiveness of advanced technologies in the management of patients with diabetes mellitus. J Diabetes Sci Technol. 2015;9(2):320-330. https://doi.org/10.1177/193229681456566110.1177/1932296814565661460458225555391 Search in Google Scholar

12. Lee I, Probst D, Klonoff D, Sode K. Continuous glucose monitoring systems - Current status and future perspectives of the flagship technologies in biosensor research. Biosens Bioelectron. 2012;181:113054. https://doi.org/10.1016/j.bios.2021.11305410.1016/j.bios.2021.11305433775474 Search in Google Scholar

13. Xue Y, Thalmayer AS, Zeising S, et al. Commercial and Scientific Solutions for Blood Glucose Monitoring—A Review. Sensors. 2022;22:425. https://doi.org/10.3390/s2202042510.3390/s22020425878003135062385 Search in Google Scholar

14. Pirnstill CW, Malik BH, Gresham VC, Coté GL. In Vivo Glucose Monitoring Using Dual-Wavelength Polarimetry to Overcome Corneal Birefringence in the Presence of Motion. Diabetes Technol Ther. 2012;14(9):819-827. https://doi.org/10.1089/dia.2012.007010.1089/dia.2012.0070342929722691020 Search in Google Scholar

15. Chen L, Hwang E, Zhang J. Fluorescent Nanobiosensors for Sensing Glucose. Sensors. 2018;18(5):1440. https://doi.org/10.3390/s1805144010.3390/s18051440598214729734744 Search in Google Scholar

16. Li N, Zang H, Sun H, et al. A Noninvasive Accurate Measurement of Blood Glucose Levels with Raman Spectroscopy of Blood in Microvessels. Molecules. 2019;24(8):1500. https://doi.org/10.3390/molecules2408150010.3390/molecules24081500651489630999565 Search in Google Scholar

17. Howsmon D, Bequette BW. Hypo- and Hyperglycemic Alarms: Devices and Algorithms. J Diabetes Sci Technol. 2015;30;9(5):1126-37. https://doi.org/10.1177/193229681558350710.1177/1932296815583507466733925931581 Search in Google Scholar

18. Ngo CO, Chai R, Nguyen TV, et al. Nocturnal Hypoglycemia Detection using EEG Spectral Moments under Natural Occurrence Conditions. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 7177-7180. https://doi.org/10.1109/EMBC.2019.885669510.1109/EMBC.2019.885669531947490 Search in Google Scholar

19. Rubega M, Scarpa F, Teodori D, et al. Detection of Hypoglycemia Using Measures of EEG Complexity in Type 1 Diabetes Patients. Entropy. 2020;22:81. https://doi.org/10.3390/e2201008110.3390/e22010081751651633285854 Search in Google Scholar

20. Blaabjerg L, Remvig LSR, Nielsen SS, et al. Prevention of Severe Hypoglycemia by Use of The Electroencephalography (EEG) Based Alarm Device, Hyposafe SUBQ. Diabetes Technology & Therapeutics. 2019;21(Suppl1);A146. Search in Google Scholar

21. Hobbs N, Hajizadeh I, Rashid M, et al. Improving Glucose Prediction Accuracy in Physically Active Adolescents With Type 1 Diabetes. J Diabetes Sci Technol. 2019;13(4):718-727. https://doi.org/10.1177/193229681882055010.1177/1932296818820550661061430654648 Search in Google Scholar

22. Jacobs PG, Resalat N, El Youssef J, et al. Incorporating an Exercise Detection, Grading, and Hormone Dosing Algorithm Into the Artificial Pancreas Using Accelerometry and Heart Rate. J Diabetes Sci Technol. 2015;9(6):1175-1184. https://doi.org/10.1177/193229681560937110.1177/1932296815609371466729526438720 Search in Google Scholar

23. Resalat N, Hilts W, Youssef JE, et al. Adaptive Control of an Artificial Pancreas Using Model Identification, Adaptive Postprandial Insulin Delivery, and Heart Rate and Accelerometry as Control Inputs. Journal of Diabetes Science and Technology. 2019;13(6):1044-1053. https://doi.org/10.1177/193229681988146710.1177/1932296819881467683517731595784 Search in Google Scholar

24. Turksoy K, Monforti C, Park M, et al. Use of wearable sensors and biometric variables in an artificial pancreas system. Sensors. 2017;17(3):E532. https://doi.org/10.3390/s1703053210.3390/s17030532537581828272368 Search in Google Scholar

25. Johansen K, Ellegaard S, Wex S. Detection of nocturnal hypoglycemia in insulin-reated diabetics by a skin temperature - skin conductance meter. Acta Medica Scand. 1986;220(3):213-217. https://doi.org/10.1111/j.0954-6820.1986.tb02753.x10.1111/j.0954-6820.1986.tb02753.x3535396 Search in Google Scholar

26. Tronstad C, Elvebakk O, Staal OM, et al. Non-invasive prediction of blood glucose trends during hypoglycemia. Anal Chim Acta. 2019;1052:37-48. https://doi.org/10.1016/j.aca.2018.12.00910.1016/j.aca.2018.12.00930685040 Search in Google Scholar

27. Turksoy K, Bayrak ES, Quinn L, et al. Multivariable Adaptive Closed-Loop Control of an Artificial Pancreas without Meal and Activity Announcement. Diabetes Technol Ther. 2013;15(5):386-400. https://doi.org/10.1089/dia.2012.028310.1089/dia.2012.0283364322923544672 Search in Google Scholar

28. Cordeiro R, Karimian N, Park Y. Hyperglycemia Identification Using ECG in Deep Learning Era. Sensors. 2021;21:6263. https://doi.org/10.3390/s2118626310.3390/s21186263847298734577473 Search in Google Scholar

29. D’Imperio S, Monasky MM, Micaglio E, et al. Early Morning QT Prolongation During Hypoglycemia: Only a Matter of Glucose? Front Cardiovasc Med. 2021;8:688875. https://doi.org/10.3389/fcvm.2021.68887510.3389/fcvm.2021.688875814431134046442 Search in Google Scholar

30. Gill GV, Woodward A, Casson IF, Weston PJ. Cardiac arrhythmia and nocturnal hypoglycaemia in type 1 diabetes—the ‘dead in bed’ syndrome revisited. Diabetologia. 2009;52(1):42-45. https://doi.org/10.1007/s00125-008-1177-710.1007/s00125-008-1177-718972096 Search in Google Scholar

31. Lee SP, Yeoh L, Harris ND, et al. Influence of autonomic neuropathy on QTc interval lengthening during hypoglycaemia in type 1 diabetes. Diabetes. 2004;53:1535-1542. https://doi.org/10.2337/diabetes.53.6.153510.2337/diabetes.53.6.153515161758 Search in Google Scholar

32. Murphy NP, Ford-Adams ME, Ong KK, et al. Prolonged cardiac repolarisation during spontaneous nocturnal hypoglycaemia in children and adolescents with type 1 diabetes. Diabetologia. 2004;47(11):1940-1947. https://doi.org/10.1007/s00125-004-1552-y10.1007/s00125-004-1552-y15551045 Search in Google Scholar

33. Elvebakk O, Tronstad C, Birkeland KI, et al. A multiparameter model for non-invasive detection of hypoglycaemia. Physiol Meas. 2019;40(8):085004. https://doi.org/10.1088/1361-6579/ab367610.1088/1361-6579/ab367631357185 Search in Google Scholar

34. Lipponen JA, Kemppainen J, Karjalainen PA, et al. Hypoglycemia detection based on cardiac repolarization features. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA. pp. 4697-4700. https://doi.org/10.1109/IEMBS.2011.609116310.1109/IEMBS.2011.609116322255386 Search in Google Scholar

35. Laitinen T, Lyyra-Laitinen T, Huopio H, et al. Electrocardiographic Alterations during Hyperinsulinemic Hypoglycemia in Healthy Subjects: ECG Changes during Hypoglycemia. Ann Noninvasive Electrocardiol. 2008;13(2):97-105. https://doi.org/10.1111/j.1542-474X.2008.00208.x10.1111/j.1542-474X.2008.00208.x693198118426434 Search in Google Scholar

36. Porumb M, Stranges S, Pescapè A, Pecchia L. Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG. Sci Rep. 2020;10(1):170. https://doi.org/10.1038/s41598-019-56927-510.1038/s41598-019-56927-5695748431932608 Search in Google Scholar

37. Nuryani N, Ling SSH, Nguyen HT. Electrocardiographic Signals and Swarm-Based Support Vector Machine for Hypoglycemia Detection. Ann Biomed Eng. 2021;40:934-945. https://doi.org/10.1007/s10439-011-0446-710.1007/s10439-011-0446-722012087 Search in Google Scholar

38. Tobore, Li J, Kandwal A, et al. Statistical and spectral analysis of ECG signal towards achieving non-invasive blood glucose monitoring. BMC Med Inform Decis Mak. 2019;19(S6):266. https://doi.org/10.1186/s12911-019-0959-910.1186/s12911-019-0959-9692143531856801 Search in Google Scholar

39. Lipponen JA, Tarvainen MP, Laitinen T, et al. A Principal Component Regression Approach for Estimation of Ventricular Repolarization Characteristics. IEEE Trans Biomed Eng. 2010;57:1062-1069. https://doi.org/10.1109/TBME.2009.203749210.1109/TBME.2009.203749220142157 Search in Google Scholar

40. Ling SH, Nguyen HT. Natural occurrence of nocturnal hypoglycemia detection using hybrid particle swarm optimized fuzzy reasoning model. Artif Intell Med. 2012;55(3):177-184. https://doi.org/10.1016/j.artmed.2012.04.00310.1016/j.artmed.2012.04.00322698854 Search in Google Scholar

41. Ling SH, San PP, Lam HK, Nguyen HT. Noninvasive detection of hypoglycemic episodes in Type 1 diabetes using intelligent hybrid rough neural system. In: 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 2014. Pp. 1238-1242. https://doi.org/10.1109/CEC.2014.690022910.1109/CEC.2014.6900229 Search in Google Scholar

42. Ling SSH, Nguyen HT. Genetic-Algorithm-Based Multiple Regression With Fuzzy Inference System for Detection of Nocturnal Hypoglycemic. IEEE Trans Inf Technol Biomed. 2011;15(2):308-315. https://doi.org/10.1109/TITB.2010.210395310.1109/TITB.2010.210395321349796 Search in Google Scholar

43. Arbi KF, Soulimane S, Saffih F. IoT technologies combining glucose control with physiological signal: comparative study. In: 2020 International Conference on Electrical Engineering (ICEE), Istanbul, Turkey. pp. 1-6. https://doi.org/10.1109/ICEE49691.2020.924984310.1109/ICEE49691.2020.9249843 Search in Google Scholar

44. Bayoumy K, Gaber M, Elshafeey A, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol. 2021;18:581-599. https://doi.org/10.1038/s41569-021-00522-710.1038/s41569-021-00522-7793150333664502 Search in Google Scholar

45. mathworks/physionet_ECG_segmentation: https://github.com/mathworks/physionet_ECG_segmentation (Accessed 30/10/2020) Search in Google Scholar

46. Dubosson F, Ranvier JE, Bromuri S, et al. The open D1NAMO dataset: A multi-modal dataset for research on non-invasive type 1 diabetes management. Inform Med Unlocked. 2018;13:92-100. https://doi.org/10.1016/j.imu.2018.09.00310.1016/j.imu.2018.09.003 Search in Google Scholar

47. Kroll MW, inventor. System and method for monitoring blood glucose levels using an implantable medical device. U.S. Patent US-20060100494-A1. May 11, 2006. Search in Google Scholar

48. Kroll MW, inventor. System and method for monitoring blood glucose levels using an implantable medical device. U.S. Patent US-7680529-B2. March 16, 2010. Search in Google Scholar

49. Zanon F, Marcantoni L, Pastore G, et al. Basic Properties And Clinical Applications Of The Intracardiac ECG. J Atr Fibrillation. 2016;31;9(4):1444. https://doi.org/10.4022/jafib.144410.4022/jafib.1444567330929250250 Search in Google Scholar

50. Venkatachalam KL, Herbrandson JE, Asirvatham SJ. Signals and signal processing for the electrophysiologist: part I: electrogram acquisition. Circ Arrhythm Electrophysiol. 2011;4(6):965-973. https://doi.org/10.1161/CIRCEP.111.96430410.1161/CIRCEP.111.96430422203661 Search in Google Scholar

51. Bayés De Luna A, Batchvarov VN, Malik M. Chapter 1: the morphology of the electrocardiogram. In: A.J. Camm (Ed.), The ESC Textbook of Cardiovascular Medicine, Blackwell Publishing (2006), pp. 1-35 Search in Google Scholar

52. Holt RIG, DeVries JH, Hess-Fischl A, et al. The Management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2021;44(11):2589-2625. https://doi.org/10.2337/dci21-004310.2337/dci21-004334593612 Search in Google Scholar

53. Merl V, Kern W, Peters A, et al. Differences between nighttime and daytime hypoglycemia counterregulation in healthy humans. Metabolism. 2004;53(7):894-8. https://doi.org/10.1016/j.metabol.2004.02.01010.1016/j.metabol.2004.02.01015254883 Search in Google Scholar

54. Simonson E, McKinlay CA. The meal test in clinical electrocardiography. Circulation. 1950;1:1006-1016. https://doi.org/10.1161/01.CIR.1.4.100610.1161/01.CIR.1.4.1006 Search in Google Scholar

55. Chapter 23 - T Wave Abnormalities. Editor(s): Borys Surawicz, Timothy K. Knilans. Chou’s Electrocardiography in Clinical Practice (Sixth Edition). W.B. Saunders, 2008. pp. 555-568. https://doi.org/10.1016/B978-141603774-3.10023-110.1016/B978-141603774-3.10023-1 Search in Google Scholar

56. Kitchin AH, Neilson JM. The T wave of the electrocardiogram during and after exercise in normal subjects. Cardiovascular Research. 1972;6(2):143-149. https://doi.org/10.1093/cvr/6.2.14310.1093/cvr/6.2.1435034229 Search in Google Scholar

Articles recommandés par Trend MD