1. bookVolume 38 (2022): Edition 2 (June 2022)
Détails du magazine
License
Format
Magazine
eISSN
2001-7367
Première parution
01 Oct 2013
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Spatial Sampling Design to Improve the Efficiency of the Estimation of the Critical Parameters of the SARS-CoV-2 Epidemic

Publié en ligne: 14 Jun 2022
Volume & Edition: Volume 38 (2022) - Edition 2 (June 2022)
Pages: 367 - 398
Reçu: 01 Apr 2020
Accepté: 01 Mar 2021
Détails du magazine
License
Format
Magazine
eISSN
2001-7367
Première parution
01 Oct 2013
Périodicité
4 fois par an
Langues
Anglais
Abstract

Given the urgent informational needs connected with the diffusion of infection with regard to the COVID-19 pandemic, in this article, we propose a sampling design for building a continuous-time surveillance system. Compared with other observational strategies, the proposed method has three important elements of strength and originality: (1) it aims to provide a snapshot of the phenomenon at a single moment in time, and it is designed to be a continuous survey that is repeated in several waves over time, taking different target variables during different stages of the development of the epidemic into account; (2) the statistical optimality properties of the proposed estimators are formally derived and tested with a Monte Carlo experiment; and (3) it is rapidly operational as this property is required by the emergency connected with the diffusion of the virus. The sampling design is thought to be designed with the diffusion of SAR-CoV-2 in Italy during the spring of 2020 in mind. However, it is very general, and we are confident that it can be easily extended to other geographical areas and to possible future epidemic outbreaks. Formal proofs and a Monte Carlo exercise highlight that the estimators are unbiased and have higher efficiency than the simple random sampling scheme.

Keywords

ABC. 2020. “Random coronavirus testing to begin in Canberra next week at drive-through centre and clinic”. ABC News. Available at: https://www.abc.net.au/news/2020-04-03/random-coronavirus-testing-begins-in-canberra/12119364 (accessed April 2020). Search in Google Scholar

Aguilar, J.B., J.S. Faust, L.M. Westafer, and J.B. Gutierrez. 2020. “Investigating the Impact of Asymptomatic Carriers on C0VID-19”, medXiv. DOI: https://doi.org/10.1101/2020.03.18.20037994.10.1101/2020.03.18.20037994 Search in Google Scholar

Alleva, G. 2017. “The new role of sample surveys in official statistics”. ITACOSM 2017, The 5th Italian Conference on Survey Methodology, June 14, 2017. Bologna IT. Available at: https://www.istatit/it/files//2015/10/Alleva_ITAC0SM_14062017.pdf (accessed April 2020). Search in Google Scholar

Alleva G. 2020. Contributo per la 12° Commissione permanente Igiene e sanità del Senato della Repubblica. May 27, 2020. Roma, IT. https://www.senato.it/application/xmanager/projects/leg18/attachments/documento_evento_procedura_commissione/files/000/135/501/GI0RGI0_ALLEVA.pdf (accessed May 2020). Search in Google Scholar

Alleva, G., G. Arbia, P.D. Falorsi, G. Pellegrini, and A. Zuliani. 2020. A sampling design for reliable estimates of the SARS-CoV-2 epidemic’s parameters. Calling for a protocol using panel data. https://web.uniroma1.it/memotef/sites/default/files/Proposal.pdf (accessed April 2020). Search in Google Scholar

Alleva G., and A. Zuliani. 2020. “Coronavirus: chiarezza sui dati”, Bancaria. Available at: https://www.bancaria.it/livello-2/archivio-sommari/gli-ultimi-sommari-di-bancaria/-bancaria-giugno-2020/covid-19-chiarezza-sui-dati/. Search in Google Scholar

Arbia, G. 1994. “Selection techniques in sampling spatial units”, Quaderni di statistica e matematica applicata alle scienze economico-sociali, XVI(1–2): 81–91. Search in Google Scholar

Arbia, G. 2020. A note on early epidemiological analysis of coronavirus disease 2019 outbreak using crowdsourced data. arXiv. Search in Google Scholar

Arbia, G. and G. Lafratta. 1997. “Evaluating and updating the sample design: the case of the concentration of SO2 in Padua”, Journal of Agricultural, Biological and Environmental Statistics, 2, 4: 451–466. DOI: https://doi.org/10.2307/1400514.10.2307/1400514 Search in Google Scholar

Arbia, G., and G. Lafratta. 2002. “Spatial sampling designs optimized under anisotropic superpopulation models”, Journal of the Royal Statistical Society series c – Applied Statistics, 51, 2: 223–23. Search in Google Scholar

Ascani, P. 2020. Technical Note on the methods of the data collection phase for a proposal of sampling design for reliable estimates of the epidemic’s parameters of SARS-CoV-2. Available at: https://web.uniroma1.it/memotef/sites/default/files/TechNote.pdf (accessed May 2020). Search in Google Scholar

Bassi F., G. Arbia, and P.D. Falorsi. 2020. “Observed and estimated prevalence of Covid-19 in Italy: How to estimate the total cases from medical swabs data, from medical sbabs data”. Science of the Total Environment, 764: 142799. DOI: https://doi.org/10.1016/j.scitotenv.2020.142799.10.1016/j.scitotenv.2020.142799 Search in Google Scholar

Borchers, D. 2009. “A non-technical overview of spatially explicit capture-recapture models”. Journal of Ornithology, 152: 435–444. DOI: https://doi.org/10.1007/s10336-010-0583-z.10.1007/s10336-010-0583-z Search in Google Scholar

Chughtai, A.A., and A.A. Malik. 2020. “Is Coronavirus disease (C0VID-19) case fatality ratio underestimated?”. Global Biosecurity, 1(3). DOI: http://doi.org/10.31646/gbio.56. Search in Google Scholar

Cliff, A.D., P. Haggett, J.K. Ord, and F.R. Verfey. 1981. Spatial Diffusion: an Historical Geography of Epidemics in an Island Community 14. Cambridge University Press. Search in Google Scholar

Cochran, W.G. 1977. Sampling Techniques. Wiley. New York. Search in Google Scholar

Deville, J.-C., and Y. Tillé. 2004. “Efficient Balanced Sampling: the Cube Method”, Biometrika 91: 893–912. DOI: https://doi.org/10.1093/biomet/91.4.893.10.1093/biomet/91.4.893 Search in Google Scholar

Deville, J.-C., and Y. Tillé. 2005. “Variance approximation under balanced sampling”, Journal of Statistical Planning and Inference 128: 569–591. DOI: https://doi.org/10.1016Zj.jspi.2003.11.011.10.1016/j.jspi.2003.11.011 Search in Google Scholar

Dewatripont, M., M. Goldman, E. Muraille, and J.-P. Platteau. 2020. “Rapidly identifying workers who are immune to COVID-19 and virus-free is a priority for restarting the economy”, VoxEU. Available at: https://voxeu.org/article/rapidly-identifying-workers-who-are-immune-covid-19-and-virus-free-priority-restarting-economy (accessed March 2020). Search in Google Scholar

Di Gennaro Splendore, L. 2020. “Random testing, quality of data and lack of information: COVID-19”. Data and Policy. Available at: https://medium.com/data-policy/random-testing-quality-of-data-and-lack-of-information-covid-19-a6e09a398d1d (accessed April 2020). Search in Google Scholar

Dorfman, R. 1943. The Detection of Defective Members of Large Populations, The Annals of Mathematical Statistics 14 (4): 436–440. DOI: http://dx.doi.org/10.1214/aoms/1177731363.10.1214/aoms/1177731363 Search in Google Scholar

Eurostat. 2017. European statistics Code of Practicerevised edition. Available at: https://ec.europa.eu/eurostat/web/products-catalogues/-/KS-02-18-142 (accessed May 2020) Search in Google Scholar

Falorsi P.D., and P. Righi. 2015. “Generalized framework for defining the optimal inclusion probabilities of one-stage sampling designs for multivariate and multi-domain surveys”. Survey methodology 41: 215–236. Available at: https://www150.statcan.gc.-ca/n1/en/catalogue/12-001-X201500114149. Search in Google Scholar

Falorsi P.D., P. Righi, and P. Lavallée. 2019. “Cost optimal sampling for the integrated observation of different populations”. Survey methodology 45(3): 485–511. Available at: https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X201900300004. Search in Google Scholar

Ferretti, L, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dorner, M. Parker, D. Bonsall, and C. Fraser. 2020. “Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing”, Science. DOI: http://dx.doi.org/10.1126/science.abb6936.10.1126/science.abb6936 Search in Google Scholar

Fuggetta M. 2020. “Testing for the Base Rate”. Bayes. Available at: http://massimofuggetta.com/2020/04/28/testing-for-the-base-rate/ (accessed April 2020). Search in Google Scholar

Gros, D. 2020. “Creating an EU ’Corona Panel’: Standardised European sample tests to uncover the true spread of the coronavirus”. VoxEU. Available at: https://voxeu.org/article/standardised-european-sample-tests-uncover-true-spread-coronavirus (accessed May 2020). Search in Google Scholar

Hackenbroch, V. 2020. “Grobe Antikörperstudie soll Immunität der Deutschen gegen Covid-19 feststellen” Spiegel. Available at: https://www.spiegel.de/wissenschaft/medizin/coronavirus-grosse-antikoerper-studie-soll-immunitaet-der-deutschen-feststel-len-a-c8c64a33-5c0f-4630-bd73-48c17c1bad23?d=1585300132&sara_ecid=soci_upd_wbMbjhOSvViISjc8RPU89NcCvtlFcJ. (accessed May 2020). Search in Google Scholar

Hamer W.H. 1906. “Epidemic diseases in England”, Lancet, 1. DOI: https://doi.org/10.1016/S0140-6736(01)80187-2.10.1016/S0140-6736(01)80187-2 Search in Google Scholar

Hansen N.H., N.W. Hurwitz, and W.G. Meadow. 1953. Sample Survey Method and Theory. Wiley, New York. Search in Google Scholar

Hartley, H.O. 1962. “Multiple Frame Surveys”, Proceedings of the Social Statistics Section, American Statistical Association, Alexandria, Va. 1962. Search in Google Scholar

Hartley, H.O. 1974. “Multiple Frame Methodology and Selected Applications”, Sankhya, 36: 99–118. Search in Google Scholar

Horvitz, D.G., and D.L. Thompson. 1952. “A generalisation of sampling without replacement from finite-universe”. J Amer Statist. Assoc. 47: 663–685. DOI: http://doi.org/0.1080/01621459.1952.10483446.10.1080/01621459.1952.10483446 Search in Google Scholar

ILO (International Labour Organization). 2020. “COVID-19 impact on the collection of labour market statistics”. https://ilostat.ilo.org/topics/covid-19/covid-19-impact-onlabour-market-statistics/ (accessed May 2020). Search in Google Scholar

Ioannidis, J. 2020. “A fiasco in the making? As the coronavirus pandemic takes hold, we are making decisions without reliable data”. Statnews. https://www.statnews.com/2020/03/17/afiasco-in-the-making-as-the-coronavirus-pandemic-takes-hold-we-are-making-decisions-withoutreliable-data/ (accessed Mar 2020). Search in Google Scholar

Istat (Istituto nazionale di statistica). 2020. “Primi risultati dell’indagine di sieroprevalenza sul SARS-CoV-2. https://www.istat.it/it/files//2020/08/ReportPrimiR-isultatiIndagineSiero.pdf (accessed Aug 2020). Search in Google Scholar

Kermack, W.O., and A.G. McKendrick. 1927. “A contributions to the mathematical theory of epidemics” Proceedings of the Royal society London 115: 700–721.10.1098/rspa.1927.0118 Search in Google Scholar

Kiesl, H. 2016. “Indirect Sampling: A Review of Theory and Recent Applications”. AStA Wirtschafts und Sozialstatistisches Archiv. DOI: http://doi.org/10.10.1007/s11943-016-0183-3.10.1007/s11943-016-0183-3 Search in Google Scholar

Kish, L. 1965. Survey Sampling, Wiley. New York. Search in Google Scholar

Lavallée, P. 2007. Indirect Sampling, Springer series in statistics.10.1007/978-0-387-70782-2 Search in Google Scholar

Lavallée, P., and L.P. Rivest. 2012. “Capture-Recapture Sampling and Indirect Sampling”. Journal of Official Statistics 28(1): 1–27. Available at: https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/capture150recapture-sampling-and-indirect-sampling.pdf. (accessed March 2022). Search in Google Scholar

Leung, G., and K. Leung. 2020. “Crowdsourcing data to mitigate epidemics, the lancet digital health”, The Lancet Digital Health. DOI: https://doi.org/10.1016/S2589-7500(20)30055-8.10.1016/S2589-7500(20)30055-8 Search in Google Scholar

Li, R., S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, and J. Shaman. 2020. “Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARSCoV2)”, Science 368 (6490): 489–493. DOI: http://doi.org/10.1126/science.abb3221.10.1126/science.abb3221716438732179701 Search in Google Scholar

Mizumoto, K., K. Kagaya, A., Zarebski, and G. Chowell. 2020. “Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020”. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 25(10), 2000180. DOI: https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180.10.2807/1560-7917.ES.2020.25.10.2000180707882932183930 Search in Google Scholar

Murthy M.N., and V.K. Sethi. 1965. “Self-Weighting Design at Tabulation Stage” Sankhya: The Indian Journal of Statistics, 27(1–2): 201–210. Search in Google Scholar

Narain, R.D. 1951. “On sampling without replacement with varying probabilities”. Journal of the Indian Society of Agricultural Statistics 3: 169–174. Search in Google Scholar

ONS (Office for national Statistics). 2020. Coronavirus (COVID-19) Infection Survey pilot: England and Wales. Available at: https://www.ons.gov.uk/peoplepopulationand-community/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/englandandwales14august2020. (accessed August 2020). Search in Google Scholar

Romania-insider.com. 2020. “Coronavirus in Romania: Over 10,000 Bucharest residents will be tested for Covid-19 as part of a study”. Romania-insider.com. Available at: https://www.romania-insider.com/coronavirus-romania-bucharest-testing-streinu-cercel. (accessed April 2020). Search in Google Scholar

Rossman, H., A. Keshet, S. Shilo, A. Gavrieli, T. Bauman, O. Cohen, R. Balicer, B. Geiger, Y. Dor, and E. Segal. 2020. “A framework for identifying regional outbreak and spread of COVID-19 from one- minute population-wide surveys”. Nature Medicine 26(5): 634–638. DOI: https://doi.org/10.1101/2020.03.19.20038844.10.1101/2020.03.19.20038844 Search in Google Scholar

Saunders-Hastings, P., B.Q. Quinn Hayes, R. Smith, and D. Krewski. 2017. “Control strategies to protect hospital resources during an influenza pandemic”. PloS one 12(6): e0179315. DOI: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179315.10.1371/journal.pone.0179315547070728614365 Search in Google Scholar

Scott J. 2000. Social Network Analysis. A Handbook, London, Sage Publications. Search in Google Scholar

Singh, A.C., and F. Mecatti. 2011. “Generalized Multiplicity-Adjusted Horvitz-Thompson Estimation as a Unified Approach to Multiple Frame Surveys”. Journal of Official Statistics 27(4): 633–650. Available at: https://www.scb.se/contentassets/ca21efb41-fee47d293bbee5bf7be7fb3/generalized-multiplicity-adjusted-horvitz-thompson-estimation-as-a-unified-approach-to-multiple-frame-surveys.pdf (accessed Marsch 2022). Search in Google Scholar

Soper H.E. 1929. “Interpretation of periodicity in disease prevalence”, Journal of the Royal Statistical Society A 92: 34–73. DOI: https://doi.org/10.2307/2341437.10.2307/2341437 Search in Google Scholar

Sudman, S., G. Monroe, M.G. Sirken, and C.D. Cowan. 1988. “Sampling Rare and Elusive Populations” Science 240(4855): 991–996. Available at: https://www.science.org/doi/10.1126/science.240.4855.991. Search in Google Scholar

Sun., K., J. Chen, and C. Viboud. 2020. “Early epidemiological analysis of coronavirus disease 2019 outbreak using crowdsourced data: a population level observational study”, The Lancet Digital Health. DOI: https://doi.org/10.1016/S2589-7500(20)30026-1.10.1016/S2589-7500(20)30026-1 Search in Google Scholar

Tillé Y., and M. Wilhelm. 2017. “Probability Sampling Designs: Principles for Choice of Design and Balancing”. Statistical Science 32(2): 176–189. DOI: https://doi.org/10.1214/16-STS606.10.1214/16-STS606 Search in Google Scholar

Thompson S.K., and G.A.F. Seber. 1996. Adaptive Sampling. Wiley Series in Probability and Statistics, New York. Search in Google Scholar

Vynnycky, E. 2010. An Introduction to Infectious Disease Modelling, edited by R.G. White. Oxford: Oxford University Press. Search in Google Scholar

Yang S., F.B. Keller, and L. Zheng. 2016. Social Network Analysis: Methods and Examples, Sage Publications, London.10.4135/9781071802847 Search in Google Scholar

Yelin, I., N. Aharony, E. Shaer-Tamar, A. Argoetti, E. Messer, D. Berenbaum, E. Shafran, A. Kuzli., N. Gandali, T. Hashimshony, Y. Mandel-Gutfreund, M. Halberthal, Y. Geffen, M. Szwarcwort-Cohen, and R. Kishony. 2020. “Evaluation of C0VID-19 RT-qPCR test in multi-sample pools”, medRxiv. DOI: https://doi.org/10.1101/2020.03.26.20039438.10.1101/2020.03.26.20039438 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo