1. bookVolume 13 (2020): Edition 2 (December 2020)
Détails du magazine
Première parution
08 Sep 2014
2 fois par an
Accès libre

Toxic and Adverse Effects of Chemotherapy with 5-Fluoropyrimidine Drugs. Could Dihydropyrimidine Dehydrogenase Enzyme Screening Serve as a Prerequisite to Successful Chemotherapy?

Publié en ligne: 21 Jan 2021
Volume & Edition: Volume 13 (2020) - Edition 2 (December 2020)
Pages: 87 - 99
Reçu: 17 Aug 2020
Accepté: 11 Dec 2020
Détails du magazine
Première parution
08 Sep 2014
2 fois par an

1. Chabner BA. General principles of cancer chemotherapy. In: Brunton L, Chabner B, Knollmman B, editors. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. New York: McGraw Hill Medical. 2011;60:1667-75.Search in Google Scholar

2. Romond EH, Perez EA, Bryant J. Transtuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673-84.10.1056/NEJMoa052122Search in Google Scholar

3. Batchelor TA, Sorensen AG, Di Tomaso E. AZD2171, a pan-VAGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11:3-95.10.1016/j.ccr.2006.11.021Search in Google Scholar

4. Holleman A, Den Boer ML, De Menezes RX. The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood lymphoblastic leukemia. Blood. 2006;107:769-76.10.1182/blood-2005-07-2930Search in Google Scholar

5. Preusser M, De Mattos-Arrude L, Thill M, Criscitiello C, Bartsch R, Ruhstaller T, De Azambuja E, Zielinski CC. CDK4/6 inhibitors in the treatment of patients with breast cancer: summary of a multidisciplinary round-table discussion. ESMO Open. 2018;3:1-19.10.1136/esmoopen-2018-000368Search in Google Scholar

6. O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13:417-30.10.1038/nrclinonc.2016.26Search in Google Scholar

7. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-74.10.1016/j.cell.2011.02.013Search in Google Scholar

8. Chabner BA, Bertini J, Cleary J, Ortiz T, Lane A, Surko JG, Ruan D. Cytotoxic agents. In: Brunton L, Chabner B, Knollmman B, editors. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. New York: McGraw Hill Medical. 2011;62:1677-730.Search in Google Scholar

9. Thummel KE, Shen DD, Isoherranen N. Design and optimization of dosage regiments: Pharmacokinetic data. In: Brunton L, Chabner B, Knollmman B, editors. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. New York: McGraw Hill Medical. 2011;62:1891-990.Search in Google Scholar

10. De Gramont A, Louvet C, Andre T. A review of GERCOD trials of bimonthly leucovorin plus 5-fluorouracil 48-h continuous infusion in advanced colorectal cancer: Evolution of regimen. Groupe d’Etude et de Recherche sur les Cancers de l’Ovarie et Degestifs (GERCOD). Eur J Cancer. 1998;34:619-26.10.1016/S0959-8049(97)00364-XSearch in Google Scholar

11. Petrelli F, Cabiddu M, Barni S. 5-Fluorouracil or Capecitabine in the treatment of advanced colorectal cancer: a pooled analysis of randomized trials. Med.Oncol. 2012;29:1020-9.Search in Google Scholar

12. European Medicine Agency. Updated Joint Assessment Report. EMA. 2019:November 22.Search in Google Scholar

13. Lee C, Ryan EJ, Doherty GA. Gastrointestinal toxicity of chemotherapeutics in colorectal cancer: the role of inflammation. J Gastroenterol. 2014;20:3751-61.Search in Google Scholar

14. Wilhelm M, Mueller L, Miller MC. Prospective, multicenter study of 5-Fluorouracil therapeutic drug monitoring in metastatic colorectal cancer treated in routine clinical practice. Clin Colorect Cancer. 2016;15:381-8.10.1016/j.clcc.2016.04.00127256667Search in Google Scholar

15. Sorrentino MF, Kim J, Foderaro AE, Truesdell AG. 5-Fluorouracil induced cardiotoxicity: review of the literature. Cardiol J. 2012;19:453-8.10.5603/CJ.2012.0084Search in Google Scholar

16. Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL. Cardiotoxicity on cancer patients treated with5-fluorouracil or capecitabine: a systemic review of incidence, manifestations and predisposing factors. Cancer Treat Rev. 2013;39:974-84.10.1016/j.ctrv.2013.03.00523582737Search in Google Scholar

17. Twelves C, Glynne-Jones R, Cassidy J. Effect of hepatic dysfunction due to liver metastases on the pharmacokinetics of capecitabine and its metabolites. Clin Cancer Res. 1999;5:1696-702.Search in Google Scholar

18. Kemeny N, Huang Y, Cohen MA. Hepatic arterial infusion of chemotherapy after resection of hepatic metastases from colorectal cancer. N Engl J Med. 1999;341:2039-48.10.1056/NEJM199912303412702Search in Google Scholar

19. Bennett JE. Antifungal agents. In: Brunton L, Chabner B, Knollmman B, editors. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. New York: McGraw Hill Medical. 2011;60:1571-91.Search in Google Scholar

20. Diasio RB, Beavers T., Carpenter JT. Potential importance of dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia and severe 5-fluorouracil induced toxicity. J Clin Invest. 1988;81:47-51.10.1172/JCI113308Search in Google Scholar

21. Milano G, Etienne MC. Potential importance of dihydropyrimidine dehydrogenase (DPD) in cancer chemotherapy. Pharmacogenetics. 1994;4:301-6.10.1097/00008571-199412000-00002Search in Google Scholar

22. Gonzelez FJ, Fernandez-Salguero P. Diagnostic analysis, clinical importance and molecular basis of dihydropyrimidine dehydrogenase deficiency. Trends Pharmacol Sci. 1995;16:325-7.10.1016/S0165-6147(00)89065-3Search in Google Scholar

23. Meulendijks D, Henricks LM, Sonke GS. Clinical toxicity relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.601G>A a predictors of severe fluoropyrimdine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015;16:1639-50.10.1016/S1470-2045(15)00286-7Search in Google Scholar

24. Van Kuilenburg AB, Haasjes J, Richel DJ. Clinical implications of dihydopyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res. 2000;6:4705-12.Search in Google Scholar

25. Terrazzino S, Cargnin S, Del Re M. DPDY IVS14+1G>A and 2846A>T genotyping for the prediction of severe fluoropyrimidine-related toxicity: a meta analysis. Pharmacogenomics. 2013;14:1255-72.10.2217/pgs.13.11623930673Search in Google Scholar

26. Froelich TK, Amstitz U, Aebi S. Clinical importance of risk variants in the dihydopyrimidine dehydrogenase gene for the precision of early-onset fluoropyrimidine toxicity. Int J Cancer. 2015;136:730-9.Search in Google Scholar

27. Mercier, C., Ciccolini, J. Profiling dihydropyrimidine dehydrogenase deficiency in patients with cancer undergoing 5-Fluoroueacil / Capecitabine therapy. Clin. Colorectal Cancer. 2006; 6:288-96.10.3816/CCC.2006.n.04717241513Search in Google Scholar

28. Leung WC, Chan ALF. Association and prediction of severe 5-fluorouacil toxicity with dihydropyrimidine dehydrogenase gene polymorphism: A meta-analysis. Biomed Reports. 2015;3:879-83.10.3892/br.2015.513466058626623034Search in Google Scholar

29. Deenen MJ, Meulendijks D, Cats A. Upfront genotyping of DPYD*2A to individualize fluoropyrimidine therapy: A safety and cost analysis. Clin Oncol. 2016;34:227-34.10.1200/JCO.2015.63.132526573078Search in Google Scholar

30. Amstutz U, Henricks LM, Offer SM, Barbarino J, Schillens JHM, Swen JJ, Klei TE, McLeod HL, Klaude KE, Diasio RB, Schwab M. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidene Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin Pharmacol Ther. 2018;103:210-6.10.1002/cpt.911576039729152729Search in Google Scholar

31. Institut national du Cancer. DPD deficiency screening with a view to preventing some severe toxicities occurring with treatments including fluoropyrimidines (5-fluorouracil or capecitabine). INCA, December 2018.Search in Google Scholar

32. Zhang X, Li L, Fourie J, Davie J, Guarcello V, Diasio R. The role of SP1 and SP3 in the constitutive DPYD gene expression. Biochem Biophys Acta. 2006;175:247-56.10.1016/j.bbaexp.2006.05.00116806531Search in Google Scholar

33. Loganayagam A, Arenas-Hernandez M, Corrigan A. Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br J Cancer. 2013;108:2505-15.10.1038/bjc.2013.262369424323736036Search in Google Scholar

34. Rosmarin D, Palles C, Pagnamenta A. A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants at PY and a putative role for ENOSF1 rather than TYMS. Gut. 2015;64:111-20.10.1136/gutjnl-2013-306571428362224647007Search in Google Scholar

35. Ezzeldin H, Lee A, Mattison L, Diasio R. Methylation of the DPYD promoter: an alternative mechanism for dihydropyrimidine dehydrogenase deficiency in cancer patients. Clin Cancer Res. 2005;11: 8699-705.10.1158/1078-0432.CCR-05-152016361556Search in Google Scholar

36. Harris B, Song R, Soong S, Diasio R. Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma levels in cancer patients receiving 5-Flourouracil by protracted continuous infusion. Cancer Res. 1990;50:197-201.Search in Google Scholar

37. Jacobs BA, Deenen MJ, Plum D. Pronounced between-subject and circadian variability in thymidylate synthase and dihydropyrimidine dehydrogenase enzyme activity in human volunteers. Br J Clin Pharmacol. 2016;82:706-16.10.1111/bcp.13007533810127161955Search in Google Scholar

38. Loriot MA, Ciccoline J, Thomas F, Barin Le Guellec C, Royer F, Milano J, Picard N, Becquemont L, Verstuyft C, Narjoz C, Schmitt A, Bobin-Dubigeon C, Harle A, Paci A, Poinsignon V, Quaranta S, Evrard A, Hannart B, Broly F, Fonrose X, Lafay-Chebassier C, Wozny AS, Masskouri F, Boyer JC, Etienne-Grimaldi MC. Dihydropyrimidine dehydrogenase (DPD) deficiency screening and fluoropyrimidine-based chemotherapies: Update and recommendations of the French GPCO-Unicancer and RNPGx networks. Bull Cancer. 2018;105:397-407.10.1016/j.bulcan.2018.02.00129486921Search in Google Scholar

39. Sistonen J, Buchel B, Froehlic TK, Kummer D, Fontana S, Joerger M. Predicting 5-fluorouracil toxicity: DPD genotype and 5,6-dihydrouracil : uracil ratio. Pharmacogenomics. 2014;15:1653-66.10.2217/pgs.14.12625410891Search in Google Scholar

40. Lunenburg C, Henrocks LM, Guchelaar HJ. Prospectieve DPYD genotyping to reduce the risk of fluoropyrimidine-indiced severe toxicity: ready for prime time. Eur J Cancer. 2016;54:40-8.10.1016/j.ejca.2015.11.00826716401Search in Google Scholar

41. Van Kuilenburg A, Meijer J, Tanck MW, Dobritzsch D, Zoetekouw L, Dekkers, LL. Phenotyping and clinical implications of variants in the dihydropyrimidine dehydrogenase gene. Biochem Biophys Acta. 2016;186:754-62.Search in Google Scholar

42. Meulendijks D, Henricks LM, Jacobs BAW, Aliev A, Deenen MJ, De Vries N, Rosing H, Van Werkhoven E, De Boer A, Beijnen JH, Mandigers C, Soesan M, Cats A, Schellens JHM. Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br J Cancer. 2017;116:1415-24.10.1038/bjc.2017.94552009928427087Search in Google Scholar

43. Ciccolini J, Del Re M, Danesi R. Predicting fluoropyrimidine-related toxicity: turning wish to will, the PAMM-EORTS position. Ann Oncology. 2018;29:1893-94.10.1093/annonc/mdy25830032203Search in Google Scholar

44. Boisdron-Celle M, Capitain O, Faroux R. Prevention of 5-fluorouracil-induced early severe toxicity by pretherapeutic dihydropyrimidine dehydrogenase deficiency screening: Assessment of multiparametric approach. Semin Oncology. 2017;44:13-23.10.1053/j.seminoncol.2017.02.00828395758Search in Google Scholar

45. Beumer JH, Chu E, Allegra C, Tanigawara Y, Nilano G, Diasio R, Kim TW, Mathjissen RH, Zhang L, Arnold D, Muneoka K, Boku N, Joergr M. Therapeutic drug monitoring in oncology: International Association of Therapeutic Drug Monitoring and Clinical Toxicology Recommendations for 5-Fluorouracil Therapy. Clin Pharmacol Ther. 2019;105: 598-613.10.1002/cpt.1124630928629923599Search in Google Scholar

46. Fleming RA, Milano G, Thyss A, Etienne MC, Renee N, Schneider M. Correlation between dihydropyrimidine dehydrogenase activity in peripheral mononuclear cells and systemic clearance of fluorouracil in cancer patients. Cancer Res. 1992;52:2899-902.Search in Google Scholar

47. Lu Z, Zhang R, Diasio RB. Dihydropyrimidine dehydrogenase activity in human peripheral blood mononuclear cells and liver population characteristics, newly identified deficient patients, and clinical implication in 5-fluorouracil chemotherapy. Cancer Res. 1993;53:5433-8.Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo