1. bookVolume 67 (2021): Edition 4 (December 2021)
Détails du magazine
Première parution
04 Apr 2014
4 fois par an
access type Accès libre

Probiotics in prevention and treatment of cardiovascular diseases

Publié en ligne: 02 Feb 2022
Volume & Edition: Volume 67 (2021) - Edition 4 (December 2021)
Pages: 77 - 85
Reçu: 25 Oct 2021
Accepté: 05 Dec 2021
Détails du magazine
Première parution
04 Apr 2014
4 fois par an

Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med 2019; 25(5):716–729. doi:https://dx.doi.org/10.1038/s41591-019-0439-x10.1038/s41591-019-0439-x31061539Search in Google Scholar

Food and Agriculture Organization and World Health Organization Expert Consultation. Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. Córdoba, Argentina: Food and Agriculture Organization of the United Nations and World Health Organization; 2001. Available from:http://www.fao.org/3/a0512e/a0512e.pdfSearch in Google Scholar

Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M et al. Role of the normal gut microbiota. World J Gastroenterol 2015; 21(29):8787–8803. doi:https://dx.doi.org/10.3748/wjg.v21.i29.878710.3748/wjg.v21.i29.8787452802126269668Search in Google Scholar

Przerwa F, Kukowka A, Kotrych K, Uzar I. Probiotics in the treatment of gastrointestinal diseases. Herba Pol 2021; 67(2):39-48. doi:https://dx.doi.org/10.2478/hepo-2021-001210.2478/hepo-2021-0012Search in Google Scholar

Vanharanta M, Voutilainen S, Rissanen TH, Adlercreutz H, Salonen JT. Risk of cardiovascular disease-related and all-cause death according to serum concentrations of enterolactone: Kuopio ischaemic heart disease risk factor study. Arch Intern Med 2003; 163(9):1099–1104. doi:https://dx.doi.org/10.1001/archinte.163.9.109910.1001/archinte.163.9.109912742810Search in Google Scholar

Kummen M, Mayerhofer C, Vestad B, Broch K, Awoyemi A, Storm-Larsen C et al. Gut micro-biota signature in heart failure defined from profiling of 2 independent cohorts. J Am Coll Cardiol 2018; 71(10):1184–1186. doi:https://dx.doi.org/10.1016/j.jacc.2017.12.05710.1016/j.jacc.2017.12.05729519360Search in Google Scholar

Peng J, Xiao X, Hu M, Zhang X. Interaction between gut microbiome and cardiovascular disease. Life Sci 2018; 214:153–157. doi:https://dx.doi.org/10.1016/j.lfs.2018.10.06310.1016/j.lfs.2018.10.06330385177Search in Google Scholar

Wang, Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341):57–63. doi:https://dx.doi.org/10.1038/nature0992210.1038/nature09922308676221475195Search in Google Scholar

Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Investig 2014; 124(10):4204–4211. doi:https://dx.doi.org/10.1172/JCI7233110.1172/JCI72331421518925271725Search in Google Scholar

Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. The New England Journal of Medicine 2013; 368(17):1575–1584. doi:https://dx.doi.org/10.1056/NEJMoa110940010.1056/NEJMoa1109400370194523614584Search in Google Scholar

Din AU, Hassan A, Zhu Y, Yin T, Gregersen H, Wang G. Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Appl Microbiol Biotechnol 2019; 103(23-24):9217–9228. doi:https://dx.doi.org/10.1007/s00253-019-10142-410.1007/s00253-019-10142-431655880Search in Google Scholar

Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut 1994; 35 (1 Suppl):S35–S38. doi:https://dx.doi.org/10.1136/gut.35.1_suppl.s3510.1136/gut.35.1_Suppl.S35Search in Google Scholar

Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013; 62(8):1112–1121. doi:https://dx.doi.org/10.1136/gutjnl-2012-30330410.1136/gutjnl-2012-303304Search in Google Scholar

Peng J, Xiao X, Hu M, Zhang X. Interaction between gut microbiome and cardiovascular disease. Life Sci 2018; 214:153–157. doi:https://dx.doi.org/10.1016/j.lfs.2018.10.06310.1016/j.lfs.2018.10.063Search in Google Scholar

World Health Organization. (2021, June 11). “Cardiovascular diseases (CVDs)” https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)Search in Google Scholar

Francula-Zaninovic S, Nola IA. Management of measurable variable cardiovascular disease’ risk factors. Curr Cardiol Rev 2018; 14(3):153–163. doi:https://dx.doi.org/10.2174/1573403X1466618022210231210.2174/1573403X14666180222102312Search in Google Scholar

Pająk A, Szafraniec K, Polak M, Polakowska M, Kozela M, Piotrowski W et al. Changes in the prevalence, treatment, and control of hyper-cholesterolemia and other dyslipidemias over 10 years in Poland: the WOBASZ study. Polskie Arch Med Wewnętrznej 2016; 126(9):642–652. doi:https://dx.doi.org/10.20452/pamw.346410.20452/pamw.3464Search in Google Scholar

Lu H, Daugherty A. Atherosclerosis. Arterioscler Thromb Vasc Biol 2015; 35(3):485–491. doi:https://dx.doi.org/10.1161/ATVBAHA.115.30538010.1161/ATVBAHA.115.305380Search in Google Scholar

Keil U. Coronary artery disease: the role of lipids, hypertension and smoking. Basic Res Cardiol 2000; 95 (Suppl 1):152–158. doi:https://dx.doi.org/10.1007/s00395007001010.1007/s003950070010Search in Google Scholar

Mo R, Zhang X, Yang Y. Effect of probiotics on lipid profiles in hypercholesterolaemic adults: A meta-analysis of randomized controlled trials. Med Clin (Barc) 2019; 152(12):473–48. doi:https://dx.doi.org/10.1016/j.medcli.2018.09.00710.1016/j.medcli.2018.09.007Search in Google Scholar

Kimoto H, Ohmomo S, Okamoto T. Cholesterol removal from media by lactococci. J Dairy Sci 2002; 85(12):3182–3188. doi: https://dx.doi.org/10.3168/jds.S0022-0302(02)74406-810.3168/jds.S0022-0302(02)74406-8Search in Google Scholar

Lye HS, Rusul G, Liong MT. Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J Dairy Sci 2010; 93(4):1383–1392. doi:https://dx.doi.org/10.3168/jds.2009-257410.3168/jds.2009-257420338415Search in Google Scholar

Westfall S, Lomis N, Prakash S. Ferulic acid produced by Lactobacillus fermentum influences developmental growth through a dTOR-mediated mechanism. Mol Biotechnol 2019; 61(1):1–11. doi:https://dx.doi.org/10.1007/s12033-018-0119-y10.1007/s12033-018-0119-y30368647Search in Google Scholar

Bhaskaragoud G, Rajath S, Mahendra VP, Kumar GS, Gopala Krishna AG, Kumar GS. Hypolipidemic mechanism of oryzanol components-ferulic acid and phytosterols. Biochem Biophys Res Commun 2016; 476(2):82–89. doi:https://dx.doi.org/10.1016/j.bbrc.2016.05.05310.1016/j.bbrc.2016.05.05327179780Search in Google Scholar

Klaver FA, van der Meer R. The assumed assimilation of cholesterol by Lactobacilli and Bifido-bacterium bifidum is due to their bile salt-deconjugating activity. Appl Environ Microbiol 1993; 59(4):1120–1124. doi:https://dx.doi.org/10.1128/aem.59.4.1120-1124.199310.1128/aem.59.4.1120-1124.19932022488489229Search in Google Scholar

Xie N, Cui Y, Yin YN, Zhao X, Yang JW, Wang ZG et al. Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complement Altern Med 2011; 11:53. doi:https://dx.doi.org/10.1186/1472-6882-11-5310.1186/1472-6882-11-53314401021722398Search in Google Scholar

Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A et al. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. J Diabetes Res 2012; 2012:902917. doi:https://dx.doi.org/10.1155/2012/90291710.1155/2012/902917335267022611376Search in Google Scholar

Wang D, Xia M, Yan X, Li D, Wang L, Xu Y, Jin T, Ling W. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res 2012; 111(8):967–981. doi:https://dx.doi.org/10.1161/CIRCRESAHA.112.26650210.1161/CIRCRESAHA.112.26650222821931Search in Google Scholar

Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond) 2016; 130(12):943–986. doi:https://dx.doi.org/10.1042/CS2016013610.1042/CS2016013627154742Search in Google Scholar

Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults the evidence report. National Institutes of Health. Obes Res 1998; 6(Suppl 2):51S–209S. doi:https://dx.doi.org/10.1002/j.1550-8528.1998.tb00690.x10.1002/j.1550-8528.1998.tb00690.xSearch in Google Scholar

Djalalinia S, Qorbani M, Peykari N, Kelishadi R. Health impacts of obesity. Pak J Med Sci 2015; 31(1):239–242. doi:https://dx.doi.org/10.12669/pjms.311.703310.12669/pjms.311.7033438619725878654Search in Google Scholar

Caballero B. Humans against obesity: Who will win? Adv Nutr 2019; 10(suppl. 1):S4–S9. doi:https://dx.doi.org/10.1093/advances/nmy05510.1093/advances/nmy055636352630721956Search in Google Scholar

World Health Organization. (2021, June 9). “Obesity and overweight”https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweightSearch in Google Scholar

Sanders ME. Probiotics and microbiota composition. BMC Med 2016; 14(1):82. doi:https://dx.doi.org/10.1186/s12916-016-0629-z10.1186/s12916-016-0629-z489025127250499Search in Google Scholar

Drissi F, Raoult D, Merhej V. Metabolic role of lactobacilli in weight modification in humans and animals. Microb Pathog 2017; 106:182–194. doi:https://dx.doi.org/10.1016/j.micpath.2016.03.00610.1016/j.micpath.2016.03.00627033001Search in Google Scholar

Zhang Q, Wu Y, Fei X. Effect of probiotics on body weight and body-mass index: a systematic review and meta-analysis of randomized, controlled trials. Int J Food Sci Nutr 2015; 67(5):571–580. doi:https://dx.doi.org/10.1080/09637486.2016.118115610.1080/09637486.2016.118115627149163Search in Google Scholar

Hadi A, Alizadeh K, Hajianfar H, Mohammadi H, Miraghajani M. Efficacy of synbiotic supplementation in obesity treatment: A systematic review and meta-analysis of clinical trials. Crit Rev Food 2020; 60(4):584–596. doi:https://dx.doi.org/10.1080/10408398.2018.154521810.1080/10408398.2018.154521830595036Search in Google Scholar

Barroso TA, Marins LB, Alves R, Gonçalves ACS, Barroso SG, Rocha GS. Association of central obesity with the incidence of cardiovascular diseases and risk factors. Int J Cardiovasc Sci 2017; 30(5):416-424. doi:https://dx.doi.org/10.5935/2359-4802.2017007310.5935/2359-4802.20170073Search in Google Scholar

Akil L, Ahmad HA. Relationships between obesity and cardiovascular diseases in four southern states and Colorado. J Health Care Poor Underserved 2011; 22(4 Suppl):61–72. doi:https://dx.doi.org/10.1353/hpu.2011.016610.1353/hpu.2011.0166325006922102306Search in Google Scholar

Cercato C, Fonseca FA. Cardiovascular risk and obesity. Diabetol Metab Syndr 2019; 11:74. doi:https://dx.doi.org/10.1186/s13098-019-0468-010.1186/s13098-019-0468-0671275031467596Search in Google Scholar

International Diabetes Federation. IDF diabetes atlas, 9th edn. Brussels, Belgium: 2019. Available at:https://www.diabetesatlas.orgSearch in Google Scholar

Haas AV, McDonnell ME. Pathogenesis of cardiovascular disease in diabetes. Endocrinol Metab Clin North Am 2018; 47(1):51–63. doi:https://dx.doi.org/10.1016/j.ecl.2017.10.01010.1016/j.ecl.2017.10.01029407056Search in Google Scholar

Jafarabadi MA, Dehghani A, Khalili L, Barzegar A, Mesrizad M, Hassanalilou TA. Meta-analysis of randomized controlled trials of the effect of probiotic food or supplement on glycemic response and body mass index in patients with type 2 diabetes, updating the evidence. Curr Diabetes Rev 2021; 17(3):356–364. doi:https://dx.doi.org/10.2174/157339981666620081215102910.2174/157339981666620081215102932787763Search in Google Scholar

Yao K, Zeng L, He Q, Wang W, Lei J, Zou X. Effect of probiotics on glucose and lipid metabolism in type 2 diabetes mellitus: A meta-analysis of 12 randomized controlled trials. Med Sci Monit 2017; 23:3044–3053. doi:https://dx.doi.org/10.12659/msm.90260010.12659/MSM.902600Search in Google Scholar

Fabian E, Elmadfa I. The effect of daily consumption of probiotic and conventional yoghurt on oxidant and antioxidant parameters in plasma of young healthy women. Int J Vitam Nutr Res 2007; 77(2):79–88. doi:https://dx.doi.org/10.1024/0300-9831.77.2.7910.1024/0300-9831.77.2.7917896581Search in Google Scholar

Moroti C, Souza Magri LF, de Rezende Costa M, Cavallini DC, Sivieri K. Effect of the consumption of a new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus. Lipids Health Dis 2012; 11:29. doi:https://dx.doi.org/10.1186/1476-511X-11-2910.1186/1476-511X-11-29330543022356933Search in Google Scholar

Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 2018; 17(1):122. doi:https://dx.doi.org/10.1186/s12933-018-0762-410.1186/s12933-018-0762-4611924230170598Search in Google Scholar

Tajadadi-Ebrahimi M, Bahmani F, Shakeri H, Hadaegh H, Hijijafari M, Abedi F et al. Effects of daily consumption of synbiotic bread on insulin metabolism and serum high-sensitivity C-reactive protein among diabetic patients: a double-blind, randomized, controlled clinical trial. Ann Nutr Metab 2014; 65(1):34–41. doi:https://dx.doi.org/10.1159/00036515310.1159/00036515325196301Search in Google Scholar

Tripolt NJ, Leber B, Blattl D, Eder M, Wonisch W, Scharnagl H, Stojakovic T et al. Short communication: Effect of supplementation with Lactobacillus casei shirota on insulin sensitivity, β-cell function, and markers of endothelial function and inflammation in subjects with metabolic syndrome a pilot study. J Dairy Sci 2013; 96(1):89–95. doi:https://dx.doi.org/10.3168/jds.2012-586310.3168/jds.2012-586323164226Search in Google Scholar

Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L et al. Nat Rev Dis Primers 2019; 5(1):56. doi:https://dx.doi.org/10.1038/s41572-019-0106-z10.1038/s41572-019-0106-z31420554Search in Google Scholar

Maguire EM, Pearce S, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol 2019; 112:54–71. doi: https://dx.doi.org/10.1016/j.vph.2018.08.00210.1016/j.vph.2018.08.00230115528Search in Google Scholar

Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol 2018; 100:1–19. doi:https://dx.doi.org/10.1016/j.vph.2017.05.00510.1016/j.vph.2017.05.00528579545Search in Google Scholar

Gomes AC, de Sousa RG, Botelho PB, Gomes TL, Prada PO, Mota JF. The additional effects of a probiotic mix on abdominal adiposity and anti-oxidant status: A double-blind, randomized trial. Obesity (Silver Spring) 2017; 25(1):30–38. doi:https://dx.doi.org/10.1002/oby.2167110.1002/oby.2167128008750Search in Google Scholar

Ding YH, Qian LY, Pang J, Lin JY, Xu Q, Wang LH et al. The regulation of immune cells by Lactobacilli: a potential therapeutic target for anti-atherosclerosis therapy. Oncotarget 2017; 8(35):59915–59928. doi:https://dx.doi.org/10.18632/oncotarget.1834610.18632/oncotarget.18346560178928938693Search in Google Scholar

Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE et al. European Society of Cardiology: Cardiovascular disease statistics 2019. Eur Heart J 2020; 41(1):12–85. doi:https://dx.doi.org/10.1093/eurheartj/ehz85910.1093/eurheartj/ehz85931820000Search in Google Scholar

Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 2018; 14(7):442–456. doi:https://dx.doi.org/10.1038/s41581-018-0018-210.1038/s41581-018-0018-2638560529760448Search in Google Scholar

Huart J, Leenders J, Taminiau B, Descy J, Saint-Remy A, Daube G et al. Gut microbiota and fecal levels of short-chain fatty acids differ upon 24-hour blood pressure levels in men. Hypertension 2019; 74(4):1005–1013. doi:https://dx.doi.org/10.1161/HYPERTENSIONAHA.118.1258810.1161/HYPERTENSIONAHA.118.1258831352822Search in Google Scholar

Bartley A, Yang T, Arocha R et al. Increased abundance of lactobacillales in the colon of beta-adrenergic receptor knock out mouse is associated with increased gut bacterial production of short chain fatty acids and reduced IL17 expression in circulating CD4+ immune cells. Front Physiol 2018; 9:1593. doi:https://dx.doi.org/10.3389/fphys.2018.0159310.3389/fphys.2018.01593624291130483153Search in Google Scholar

Chi C, Li C, Wu D, Buys N, Wang W, Fan H, Sun J. Effects of probiotics on patients with hypertension: a systematic review and meta-analysis. Curr Hypertens Rep 2020; 22(5):34. doi:https://dx.doi.org/10.1007/s11906-020-01042-410.1007/s11906-020-01041-5Search in Google Scholar

Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension (Dallas, Tex. : 1979), 2014; 64(4):897–903.https://dx.doi.org/10.1161/HYPERTENSIONAHA.114.0346910.1161/HYPERTENSIONAHA.114.0346925047574Search in Google Scholar

Chen Y, Liu W, Xue J, Yang J, Chen X, Shao Y et al. Angiotensin-converting enzyme inhibitory activity of Lactobacillus helveticus strains from traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9. Int J Dairy Sci 2014; 97(11):6680–6692. doi:https://dx.doi.org/10.3168/jds.2014-796210.3168/jds.2014-796225151888Search in Google Scholar

Lin PP, Hsieh YM, Kuo WW, Lin YM, Yeh YL, Lin CC et al. Probiotic-fermented purple sweet potato yogurt activates compensatory IGF-IR/PI3K/Akt survival pathways and attenuates cardiac apoptosis in the hearts of spontaneously hypertensive rats. Int J Mol Med 2013; 32(6):1319–1328. doi:https://dx.doi.org/10.3892/ijmm.2013.152410.3892/ijmm.2013.152424127171Search in Google Scholar

Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland J et al. ESC Scientific Document Group. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37(27):2129–2200. doi:https://dx.doi.org/10.1093/eurheartj/ehw12810.1093/eurheartj/ehw12827206819Search in Google Scholar

Cui X, Ye L, Li J, Jin L, Wang W, Li S et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 2018; 8(1):635. doi:https://dx.doi.org/10.1038/s41598-017-18756-210.1038/s41598-017-18756-2576662229330424Search in Google Scholar

Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, Yagi H et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One 2017;12(3):e0174099. doi:https://dx.doi.org/10.1371/journal.pone.017409910.1371/journal.pone.0174099536220428328981Search in Google Scholar

Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Micro-biol Lett 2009; 294(1):1–8. doi:https://dx.doi.org/10.1111/j.1574-6968.2009.01514.x10.1111/j.1574-6968.2009.01514.x19222573Search in Google Scholar

Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504(7480):446–450. doi:https://dx.doi.org/10.1038/nature1272110.1038/nature1272124226770Search in Google Scholar

Leonel AJ, Alvarez-Leite JI. Butyrate: implications for intestinal function. Curr Opin Clin Nutr Metab Care 2012; 15(5): 474–479. doi:https://dx.doi.org/10.1097/MCO.0b013e32835665fa10.1097/MCO.0b013e32835665fa22797568Search in Google Scholar

Lopez CA, Kingsbury DD, Velazquez EM, Bäumler AJ. Collateral damage: microbiota-derived metabolites and immune function in the antibiotic era. Cell Host Microbe 2014; 16(2):156–163. doi:https://dx.doi.org/10.1016/j.chom.2014.07.00910.1016/j.chom.2014.07.009415131325121745Search in Google Scholar

Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 2014; 64(18):1908–1914. doi:https://dx.doi.org/10.1016/j.jacc.2014.02.61710.1016/j.jacc.2014.02.617425452925444145Search in Google Scholar

Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 2004; 350(14):1387–1397. doi:https://dx.doi.org/10.1056/NEJMoa03280410.1056/NEJMoa03280415070788Search in Google Scholar

Dehghan P, Gargari BP, Jafar-Abadi MA, Alias-gharzadeh A. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial. Int J Food Sci Nutr 2014; 65(1):117–123. doi:https://dx.doi.org/10.3109/09637486.2013.83673810.3109/09637486.2013.83673824059649Search in Google Scholar

Escobedo G, López-Ortiz E, Torres-Castro I. Gut microbiota as a key player in triggering obesity, systemic inflammation and insulin resistance. Rev Invest Clin 2014; 66(5):450-9.Search in Google Scholar

Gan XT, Ettinger G, Huang CX, Burton JP, Haist JV, Rajapurohitam V et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail 2014; 7(3):491–499. doi:https://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.00097810.1161/CIRCHEARTFAILURE.113.00097824625365Search in Google Scholar

Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 2012; 26(4):1727-35. doi:https://dx.doi.org/10.1096/fj.11-19792110.1096/fj.11-197921331690022247331Search in Google Scholar

Costanza AC, Moscavitch SD, Faria Neto HC, Mesquita ET. Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double-blind, placebo-controlled pilot trial. Int J Cardiol 2014; 179:348–350. doi:https://dx.doi.org/10.1016/j.ijcard.2014.11.03410.1016/j.ijcard.2014.11.03425464484Search in Google Scholar

Purdham DM, Rajapurohitam V, Zeidan A, Huang C, Gross GJ, Karmazyn M. A neutralizing leptin receptor antibody mitigates hypertrophy and hemodynamic dysfunction in the postinfarcted rat heart. Am J Physiol Heart Circ Physiol. 2008; 295(1):H441-6. doi:https://dx.doi.org/10.1152/ajpheart.91537.200710.1152/ajpheart.91537.200718469142Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo