1. bookVolume 6 (2022): Edition 3 (July 2022)
Détails du magazine
Première parution
30 Jan 2017
4 fois par an
Accès libre

Development of a database of RNA helicase inhibitors (VHIMDB) of pathogenic viruses and in silico screening for the potential drug molecules

Publié en ligne: 18 Jul 2022
Volume & Edition: Volume 6 (2022) - Edition 3 (July 2022)
Pages: 116 - 125
Détails du magazine
Première parution
30 Jan 2017
4 fois par an

The pathogenic RNA virus that infects human beings contains the RNA helicase enzyme, responsible for the replication of the viral genome. The enzyme is used as a suitable target against which the drug molecule acts. Therefore, the identification and proposal the novel compounds that can be targeted toward the helicase enzymes to stop the functioning of the enzyme is desirable. Although many viral helicase inhibitor molecules have been identified, still yet no unique database is available for these compounds. This research work envisages developing a curated database of RNA helicase inhibitors. The database contains in total of 353 entries that are computationally predicted and experimentally verified RNA helicase inhibitors. The database contains information like compound name, chemical properties, chemical format, and name of the target virus to which it acts against it with a user-friendly menu-driven search engine. Presently, the database is freely available at: https://vhimdb.rsatpathy.in/. Further, in silico screening of the whole database by drug-likeness and toxicity resulted in 14 potential drug molecules. The selected molecules were analyzed for their effectiveness in binding by using molecular docking score and interaction with the helicase enzymes of three categories of pathogenic viruses (SARS-CoV-2, SARS-CoV, and MERS-CoV).


1. Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. Are RNAviruses candidate agents for the next global pandemic? A review. ILAR J. 2017; 58:343-58.10.1093/ilar/ilx026710857128985316 Search in Google Scholar

2. Enard D, Petrov DA. Ancient RNA virus epidemics through the lens of recent adaptation in human genomes. Philos Trans R Soc Lond B Biol Sci. 2020; 375:20190575.10.1098/rstb.2019.0575770280333012231 Search in Google Scholar

3. Duffy S. Why are RNA virus mutation rates so damn high? PLOS Biol. 2018;16: e3000003.10.1371/journal.pbio.3000003610725330102691 Search in Google Scholar

4. Zhao Z, Bourne PE. Structural insights into the binding modes of viral RNA-dependent RNA polymerases using a function-site interaction fingerprint method for RNA virus drug discovery. J Proteome Res. 2020; 19:4698-705.10.1021/acs.jproteome.0c00623764097632946692 Search in Google Scholar

5. Yashvardhini N, Jha DK, Bhattacharya S. Identification and characterization of mutations in the SARS-CoV-2 RNA-dependent RNA polymerase as a promising antiviral therapeutic target. Arch Microbiol. 2021; 203:5463-73.10.1007/s00203-021-02527-9837412134410443 Search in Google Scholar

6. Frick DN. Helicases as antiviral drug targets. Drug News Perspect. 2003; 16:355-62.10.1358/dnp.2003.16.6.829307357168312973446 Search in Google Scholar

7. Shyr ZA, Gorshkov K, Chen CZ, Zheng W. Drug discovery strategies for SARS-CoV-2. J Pharmacol Exp Ther. 2020; 375:127-38.10.1124/jpet.120.000123756930632723801 Search in Google Scholar

8. Jankowsky E. RNA helicases at work: binding and rearranging. Trends Biochem Sci. 2011; 36:19-29.10.1016/j.tibs.2010.07.008301721220813532 Search in Google Scholar

9. Briguglio I, Piras S, Corona P, Carta A. Inhibition of RNA helicases of ssRNA+ virus belonging to Flaviviridae, Coronaviridae and Picornaviridae families. Int J Med Chem. 2011;2011:213135.10.1155/2011/213135497065027516903 Search in Google Scholar

10. Halim SA, Khan S, Khan A, Wadood A, Mabood F, Hussain J, Et al. Targeting Dengue Virus NS-3 Helicase by Ligand based Pharmacophore Modeling and Structure based Virtual Screening. Front Chem. 2017; 5:88.10.3389/fchem.2017.00088567165029164104 Search in Google Scholar

11. Kadaré G, Haenni AL. Virus-encoded RNA helicases. J Virol. 1997; 71:2583-90.10.1128/jvi.71.4.2583-2590.19971913789060609 Search in Google Scholar

12. El-Sayed AF, Mohammed AT, Hamed W, Abdelmalek S. Repurposing of available antiviral drugs against SARSCoV-2 by targeting crucial replication machinery proteins: a molecular docking study. Egypt Pharm J. 2021;20 :371-92. Search in Google Scholar

13. Faheem M, Singh VK, Srivastava A. Recent insights of SARS-CoV-2 potential inhibitors. Biomed Biotechnol Res J (BBRJ). 2022; 6:21-32. Search in Google Scholar

14. Satpathy R. In silico modeling and docking study of potential helicase (nonstructural proteins) inhibitors of novel coronavirus 2019 (severe acute respiratory syndrome coronavirus 2). Biomed Biotechnol Res J. 2020;4:330-6.10.4103/bbrj.bbrj_149_20 Search in Google Scholar

15. Shu T, Huang M, Wu D, Ren Y, Zhang X, Han Y et al. SARS-coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts. Virol Sin. 2020; 35:321-9.10.1007/s12250-020-00242-1727183132500504 Search in Google Scholar

16. White MA, Lin W, Cheng X. Discovery of COVID-19 inhibitors targeting the SARS-CoV-2 Nsp13 helicase. J Phys Chem Lett. 2020; 11:9144-51.10.1021/acs.jpclett.0c02421757130633052685 Search in Google Scholar

17. Abidi SH, Almansour NM, Amerzhanov D, Allemailem KS, Rafaqat W, Ibrahim MAA et al. Repurposing potential of posaconazole and grazoprevir as inhibitors of SARSCoV-2 helicase. Sci Rep. 2021;11:1:10290.10.1038/s41598-021-89724-0811968933986405 Search in Google Scholar

18. Kwong AD, Rao BG, Jeang KT. Viral and cellular RNA helicases as antiviral targets. Nat Rev Drug Discov. 2005; 4:845-53.10.1038/nrd1853709719116184083 Search in Google Scholar

19. Lou Z, Sun Y, Rao Z. Current progress in antiviral strategies. Trends Pharmacol Sci. 2014; 35:86-102.10.1016/j.tips.2013.11.006711280424439476 Search in Google Scholar

20. Hanson AM, Hernandez JJ, Shadrick WR, Frick DN. Identification and analysis of inhibitors targeting the hepatitis C virus NS3 helicase. Methods Enzymology2012; 511:463-8310.1016/B978-0-12-396546-2.00021-8357168222713333 Search in Google Scholar

21. Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN. Discovering new medicines targeting helicases: challenges and recent progress. J Biomol Screen. 2013; 18:761-81.10.1177/1087057113482586442723323536547 Search in Google Scholar

22. Parvez MK, Subbarao N. Molecular analysis and modeling of hepatitis E virus helicase and identification of novel inhibitors by virtual screening. Biomed Res Int. 2018;2018:5753804. Search in Google Scholar

23. Pattnaik GP, Chakraborty H. Entry inhibitors: efficient means to block viral infection. J Membr Biol. 2020; 253:425-44.10.1007/s00232-020-00136-z745644732862236 Search in Google Scholar

24. Satpathy R, Konkimalla VSB, Ratha J. Dehalobase: a database of dehalogenase and other allied enzymes. Int Jrnl Appl Res Info Tech and Comp. 2015; 6:33-7.10.5958/0975-8089.2015.00004.4 Search in Google Scholar

25. Letkowski J. Doing database design with MySQL. J Technol Res. 2015; 6:1. Search in Google Scholar

26. Welling L, Thomson L. PHP and MySQL Web development. Sams Publishing; 2003. Search in Google Scholar

27. Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today Technol. 2004; 1:337-41.10.1016/j.ddtec.2004.11.00724981612 Search in Google Scholar

28. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46: W257-63.10.1093/nar/gky318603101129718510 Search in Google Scholar

29. Satpathy R. Application of molecular docking methods on endocrine disrupting chemicals: a review. J Appl Biotechnol Rep. 2020; 7:74-80. Search in Google Scholar

30. Fan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol. 2019; 7:83-9.10.1007/s40484-019-0172-y Search in Google Scholar

31. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comp Chem. 2010; 31:455-61. Search in Google Scholar

32. Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ et al. PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49: W530-4.10.1093/nar/gkab294826272033950214 Search in Google Scholar

33. Newman JA, Douangamath A, Yadzani S, Yosaatmadja Y, Aimon A, Brandão-Neto J et al. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat Commun. 2021; 12:484810.1038/s41467-021-25166-6835806134381037 Search in Google Scholar

34. Jia Z, Yan L, Ren Z, Wu L, Wang J, Guo J et al. Delicate structural coordination of the severe acute respiratory syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res. 2019; 47:6538-50.10.1093/nar/gkz409661480231131400 Search in Google Scholar

35. Hao W, Wojdyla JA, Zhao R, Han R, Das R, Zlatev I et al. Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLOS Pathog. 2017;13:e1006474.10.1371/journal.ppat.1006474550169428651017 Search in Google Scholar

36. Lamos EM, Younk LM, Davis SN. Canagliflozin, an inhibitor of sodium–glucose cotransporter 2, for the treatment of type 2 diabetes mellitus. Expert Opin Drug MetabToxicol. 2013; 9:763-75.10.1517/17425255.2013.79128223590413 Search in Google Scholar

37. Das L, Dutta P. SGLT2 inhibition and COVID-19: the road not taken. Eur J Clin Investig. 2020:e13339.10.1111/eci.13339740451532648935 Search in Google Scholar

38. Koufakis T, Pavlidis AN, Metallidis S, Kotsa K. Sodium-glucose co-transporter 2 inhibitors in COVID-19: meeting at the crossroads between heart, diabetes and infectious diseases. Int J Clin Pharm. 2021;43:764-7.10.1007/s11096-021-01256-9794252033751323 Search in Google Scholar

39. Cannalire R, Cerchia C, Beccari AR, Di Leva FS, Summa V. Targeting SARS-CoV-2 proteases and polymerase for COVID-19 treatment: state of the art and future opportunities. J Med Chem. 2020;65:2716-46.10.1021/acs.jmedchem.0c01140768804933186044 Search in Google Scholar

40. Khater I, Nassar A. In silico molecular docking analysis for repurposing approved antiviral drugs against SARS-CoV-2 main protease. Biochem Biophys Rep. 2021;27:101032.10.1016/j.bbrep.2021.101032817349534099985 Search in Google Scholar

41. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10:766-88.10.1016/j.apsb.2020.02.008710255032292689 Search in Google Scholar

42. Lau EY, Negrete OA, Bennett WFD, Bennion BJ, Borucki M, Bourguet F et al. Discovery of small-molecule inhibitors of SARS-CoV-2 proteins using a computational and experimental pipeline. Front Mol Biosci. 2021;8:678701.10.3389/fmolb.2021.678701831500434327214 Search in Google Scholar

43. SOYLU M, ÖZBEK EN, YetİkAnacak GY. Drug repur-posing in the treatment of COVID-19. Bezmiâlem Sci. 2020;8:84-93.10.14235/bas.galenos.2020.4925 Search in Google Scholar

44. Muhammed Y. Molecular targets for COVID-19 drug development: enlightening Nigerians about the pandemic and future treatment. Biosaf Health. 2020;2:210-6.10.1016/j.bsheal.2020.07.002734365032838282 Search in Google Scholar

45. Delre P, Caporuscio F, Saviano M, Mangiatordi GF. Repur-posing known drugs as covalent and non-covalent inhibitors of the SARS-CoV-2 papain-like protease. Front Chem. 2020;8:594009.10.3389/fchem.2020.594009770129033304884 Search in Google Scholar

46. Mahmoudi S, Dehkordi MM, Asgarshamsi MH. The effect of various compounds on the COVID mechanisms, from chemical to molecular aspects. Biophysical Chemistry. 2022.10.1016/j.bpc.2022.106824909507135728510 Search in Google Scholar

47. Khan AA, Dutta T, Mondal P, Mandal M, Chowdhury SK, Ahmed M et al. Novel coronavirus Disease (COVID-19): an extensive study on evolution, global health, drug targets and vaccines. Int J Clin Virol. 2021;5:054-69.10.29328/journal.ijcv.1001036 Search in Google Scholar

48. Unni S, Aouti S, Thiyagarajan S, Padmanabhan B. Identification of a repurposed drug as an inhibitor of Spike protein of human coronavirus SARS-CoV-2 by computational methods. J Biosci. 2020;45:1-20.10.1007/s12038-020-00102-w Search in Google Scholar

49. Fallah MS, Bayati M, Najafi A, Behmard E, Javad S. Molecular docking investigation of antiviral herbal compounds as potential inhibitors of sars-cov-2 spike receptor. Biointerface res. J Appl Chem. 2021;11:12916-24. Search in Google Scholar

50. Ugwueze CV, Ezeokpo BC, Nnolim BI, Agim EA, Anikpo NC, Onyekachi KE. COVID-19 and diabetes mellitus: the link and clinical implications. Dubai Diabetes Endocrinol J. 2020;26:69-77.10.1159/000511354 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo