1. bookVolume 3 (2019): Edition 1 (October 2019)
Conférence Détails
License
Format
Conférence
eISSN
2391-8160
Première parution
15 Aug 2014
Périodicité
1 fois par an
Langues
Anglais
access type Accès libre

Investigation on the Possibility of Designing an Educational Dynamic Light Scattering Device for Sizing Particles Suspended in Air

Publié en ligne: 04 May 2020
Volume & Edition: Volume 3 (2019) - Edition 1 (October 2019)
Pages: 154 - 161
Conférence Détails
License
Format
Conférence
eISSN
2391-8160
Première parution
15 Aug 2014
Périodicité
1 fois par an
Langues
Anglais
Abstract

If a light beam meets a fluid that contains scattering centers randomly distributed in suspension, light is scattered by each of them. If the light source is coherent, the scattered waves will be also coherent, therefore they will interfere. The fluctuations of the far-field interference signal, once recorded and digitized, become a time series that can be later on analyzed to produce the average size of the suspended particles or the size distribution. The technique wears the name of Dynamic Light Scattering. We present the results of our investigation on the possibility of using an educational model, made of low-cost, conventional electronics, for recording the time signal of light scattered by particles suspended in the air as the carrier fluid. The device can be used in measuring the particle size in exhaust gases of conventional power plants or automobile engines.

Keywords

Bhattacharjee, S. (2016). DLS and zeta potential – What they are and what they are not?, Journal of Controlled Release, 235, 337–351.10.1016/j.jconrel.2016.06.017Search in Google Scholar

Berne B.J. ---amp--- Pecora R. (2000). Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, Mineola, Dover Publications.Search in Google Scholar

Chicea D. (2007). Speckle size, intensity and contrast measurement application in micron-size particle concentration assessment, European Physical Journal Applied Physics, 40, 305-310, doi: 10.1051/epjap:200716310.1051/epjap:2007163Search in Google Scholar

Chicea, D. ---amp---Turcu, I. (2007). RWMCS - An alternative random walk Monte Carlo code to simulate light scattering in biological suspensions, OPTIK, 118(5), 232-236.10.1016/j.ijleo.2006.02.008Search in Google Scholar

Chicea D. (2008). Coherent light scattering on nanofluids: computer simulation results, Applied Optics, 47(10), 1434-1442.10.1364/AO.47.001434Search in Google Scholar

Chicea D. (2012) A Study of Nanoparticle Aggregation by Coherent Light Scattering, Current Nanoscience 8(2), 259-265.10.2174/157341312800167704Search in Google Scholar

Chicea D., Indrea E. ---amp--- Cretu C.M. (2012). Assessing Fe3O4 nanoparticle size by DLS, XRD and AFM, Journal of Optoelectronics and Advanced Materials, 14(5-6), 460-466.Search in Google Scholar

Clark N.A., Lunacek J.H. ---amp--- Benedek G.B. (1970). A study of Brownian motion using light scattering, American Journal of Physics, 38(5), 575-585.10.1119/1.1976408Search in Google Scholar

Dubin S.B., Lunacek J.H. ---amp--- Benedek G.B. (1967). Observation of the spectrum of light scattered by solutions of biological macromolecules, Proceedings of the National Academy of Sciences, 57(5), 1164-1171, https://doi.org/10.1073/pnas.57.5.1164.10.1073/pnas.57.5.1164Search in Google Scholar

Goodman J.W. (1984). Laser speckle and related phenomena, J.C. Dainty, (Ed.), Berlin, Heidelberg, New York, Tokyo, Springer-Verlag.Search in Google Scholar

Goodman J.W. (2000). Statistical Optics, Wiley Classics Library Edition, NewYork, Chichester, Weinheim, Brisbane, Singapore, Toronto, John Wiley ---amp--- Sons, Inc.Search in Google Scholar

Hecht E. (2001). Optics, New York, Addison-Wesley.Search in Google Scholar

Piederriere Y., Cariou J., Guern Y, Le Jeune B., Le Brun G. ---amp--- Lotrian J. (2004). Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering, Optics Express 12, 176-188.10.1364/OPEX.12.000176Search in Google Scholar

Piederriere Y., Le Meur J., Cariou J., Abgrall J.F. ---amp--- Blouch M.T. (2004). Particle aggregation monitoring by speckle size measurement; application to blood platelets aggregation, Optics Express, 12, 4596-4601.10.1364/OPEX.12.004596Search in Google Scholar

Stetefeld, J., McKenna, S.A. ---amp--- Patel, T.R. (2016). Dynamic light scattering: a practical guide and applications in biomedical sciences, Biophysical Reviews, 8, 409–427.10.1007/s12551-016-0218-6Search in Google Scholar

Tscharnuter W. (2000). Photon Correlation Spectroscopy in Particle Sizing, in Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), Chichester, John Wiley ---amp--- Sons Ltd, 5469-5485.Search in Google Scholar

Van de Hulst H.C. (1981). Light Scattering by Small Particles, New York, Dover Publications.Search in Google Scholar

Weiner, B.B. (1996). Chapter 5: Particle sizing using ensemble averaging techniques, in: Liquid- and Surface-Borne Particle Measurement Handbook, J.Z. Knapp, T.A. Barber and A. Liebermann (Eds.), New York, 55–172, Marcel Dekker Inc.Search in Google Scholar

Xu R. (2002). Particle Characterization: Light Scattering Methods, New York, Boston, Dordrecht, London, Moscow, Kluwer Academic Publishers.Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo