1. bookVolume 22 (2023): Edition 1 (January 2023)
Détails du magazine
License
Format
Magazine
eISSN
2300-133X
Première parution
11 Dec 2014
Périodicité
1 fois par an
Langues
Anglais
Accès libre

Algebraic points on the hyperelliptic curves y2 = x5 + n2

Publié en ligne: 11 May 2023
Volume & Edition: Volume 22 (2023) - Edition 1 (January 2023)
Pages: 21 - 31
Reçu: 14 Feb 2022
Accepté: 17 Mar 2023
Détails du magazine
License
Format
Magazine
eISSN
2300-133X
Première parution
11 Dec 2014
Périodicité
1 fois par an
Langues
Anglais

Carmen Anthony Bruni. Twisted Extensions of Fermat’s Last Theorem. PhD diss. The University of British Columbia (Canada), 2015. Cited on 22 and 24.Search in Google Scholar

Faltings, Gerd. “Endlichkeitsätze für abelsch Varietäten über Zahlkörpen.” Invent. Math., 73 no. 3 (1983): 349-366. Cited on 22.Search in Google Scholar

Moussa, Fall. “Parametrization of Algebraic Points of Low Degrees on the Schaeffer Curve.” J. Math. Sci. Model., 4 no. 2 (2021): 51-55. Cited on 21.Search in Google Scholar

Griffiths, Phillip Augustus. Introduction to algebraic curves. Vol. 76 of Translations of mathematical monographs. Providence, RI: American Mathematical Society, 1989. Cited on 22.Search in Google Scholar

Mulholland, J. T. Elliptic curves with rational 2-torsion and related ternary Diophantine equations. PhD diss. The University of British Columbia (Canada), 2006. Cited on 22 and 24.Search in Google Scholar

Hindry, Marc, and Joseph Hillel Silverman. Diophantine geometry, an introduction. Vol. 201 of Graduade Texts in Mathematics. New York: Springer-Verlag, 2000. Cited on 24.Search in Google Scholar

Sall, Oumar, and Moussa Fall, and Chérif Mamina Coly. “Points algbriques de degré donné sur la courbe d’équation affine y2 = x5 + 1.” International Journal of Development Research 6 no. 11 (2016): 10295-10300. Cited on 21.Search in Google Scholar

Schaefer, Edward Frank. “Computing a Selmer group of a Jacobian using functions on the curve.” Math. Ann. 310, no. 3 (1998): 447-471. Cited on 21.Search in Google Scholar

Stoll, Michael. “On the arithmetic of the curves y2 = xl + A; and their Jacobians.” J. Reine Angew. Math. 501 (1998): 171-189. Cited on 21.Search in Google Scholar

Stoll, Michael. “On the arithmetic of the curves y2 = xl + A. II.” J. Number Theory 93, no. 2 (2002): 183-206. Cited on 21.Search in Google Scholar

Stoll, Michael, and Tonghai Yang. “On the L-function of the curves y2 = x5 + A.” J. London Math. Soc. (2) 68, no. 2 (2003): 273-287. Cited on 21.Search in Google Scholar

Stoll, Michael. “Implementing 2-descent for Jacobians of hyperelliptic curves.” Acta Arith. 98, no. 3 (2001): 245-277. Cited on 24.Search in Google Scholar

Articles recommandés par Trend MD