1. bookVolume 57 (2018): Edition 4 (January 2018)
Détails du magazine
Première parution
01 Mar 1961
4 fois par an
Anglais, Polonais
Accès libre


Publié en ligne: 26 Feb 2022
Volume & Edition: Volume 57 (2018) - Edition 4 (January 2018)
Pages: 360 - 373
Reçu: 01 Apr 2018
Accepté: 01 Aug 2018
Détails du magazine
Première parution
01 Mar 1961
4 fois par an
Anglais, Polonais

Alcoforado Diniz J., Coulthurst S.J.: Intraspecies competition in Serratia marcescens is mediated by type VI-secreted Rhs effectors and a conserved effector-associated accessory protein. J. Bacteriol.197, 2350–2360 (2015)10.1128/JB.00199-15452418525939831Search in Google Scholar

Alcoforado Diniz J., Liu Y.C., Coulthurst S.J.: Molecular weaponry: Diverse effectors delivered by the Type VI secretion system. Cell. Microbiol,17, 1742–1751 (2015)10.1111/cmi.12532483237726432982Search in Google Scholar

Allsopp L.P., Wood T.E., Howard S.A., Maggiorelli F., Nolan L.M., Wettstadt S., Filloux A.: RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 114, 7707–7712 (2017)10.1073/pnas.1700286114553065828673999Search in Google Scholar

Alteri C.J., Mobley H.L.T. i wsp.: Multicellular bacteria deploy the type VI secretion system to preemptively strike neighboring cells. PLoS Pathogens, 9, e1003608 (2013)10.1371/journal.ppat.1003608376421324039579Search in Google Scholar

Alteri C.J., Himpsl S.D., Zhu K., Hershey H.L., Musili N., Miller J.E., Mobley H.L.T.: Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity. PLoS Pathogens, 13, e1006729 (2017)10.1371/journal.ppat.1006729571439129155899Search in Google Scholar

Anderson M.S., Garcia E.C., Cotter P.A.: The Burkholderia bcpA-IOB genes define unique classes of two-partner secretion and contact dependent growth inhibition systems. PLoS Genetics, 8, e1002877 (2012)10.1371/journal.pgen.1002877341546222912595Search in Google Scholar

Anderson M.S., Garcia E.C., Cotter P.A.: Kind discrimination and competitive exclusion mediated by contact-dependent growth inhibition systems shape biofilm community structure. PLoS Pathogens, 10, e1004076 (2014)10.1371/journal.ppat.1004076399072424743836Search in Google Scholar

Aoki S.K., Diner E.J., de Roodenbeke C.T., Burgess B.R., Poole S.J., Braaten B.A., Low D.A.: A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature, 468, 439–442 (2010)10.1038/nature09490305891121085179Search in Google Scholar

Aoki S.K., Low D.A. i wsp.: Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol. Microbiol.70, 323–340 (2008)Search in Google Scholar

Aoki S.K., Pamma R., Hernday A.D., Bickham J.E., Braaten B.A., Low D.A.: Contact-dependent inhibition of growth in Escherichia coli. Science, 309, 1245–1248 (2005)10.1126/science.111510916109881Search in Google Scholar

Aoki S.K., Poole S.J., Hayes C.S., Low D.A.: Toxin on a stick: modular CDI toxin delivery systems play roles in bacterial competition. Virulence, 2, 356–359 (2011)10.4161/viru.2.4.16463317367921705856Search in Google Scholar

Aoki S.K., Webb J.S., Braaten B.A., Low D.A.: Contact-dependent growth inhibition causes reversible metabolic downregulation in Escherichia coli. J. Bacteriol.191,1777–1786 (2009)10.1128/JB.01437-08264837219124575Search in Google Scholar

Bandara H.M., Yau J.Y., Watt R.M., Jin L.J., Samaranayake L.P.: Pseudomonas aeruginosa inhibits in-vitro Candida biofilm development. BMC Microbiol.10, DOI:10.1186/1471-2180-10-125 (2010)10.1186/1471-2180-10-125287454820416106Search in Google Scholar

Bandara H.M.H.N., Yau J.Y.Y., Watt R.M., Jin L.J., Samaranayake L.P.: Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation. J. Med. Microbiol.58, 1623–1631 (2009)10.1099/jmm.0.012989-019661208Search in Google Scholar

Basler M.: Type VI secretion system: secretion by a contractile nanomachine. Philos. Trans. R. Soc. Lond. B Biol. Sci.370, DOI:10.1098/rstb.2015.0021 (2005)10.1098/rstb.2015.0021463259826370934Search in Google Scholar

Batot G., Goulding C.W.: i wsp.: The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily. Nucleic Acids Res.45,5013–5025 (2017)Search in Google Scholar

Beck C.M., Diner E.J., Kim J.J., Low D.A., Hayes C.S.: The F pilus mediates a novel pathway of CDI toxin import. Mol. Microbiol.93, 276–290 (2014)10.1111/mmi.12658410718924889811Search in Google Scholar

Beck C.M., Morse R.P., Cunningham D.A., Iniguez A., Low D.A., Goulding C.W., Hayes C.S.: CdiA from Enterobacter cloacaedelivers a toxic ribosomal RNase into target bacteria. Structure,22, 707–718 (2015)10.1016/j.str.2014.02.012401618324657090Search in Google Scholar

Beck C.M., Willett J.L.E., Cunningham D.A., Kim J.J., Low D.A., Hayes C.S.: CdiA effectors from uropathogenic Escherichia coliuse heterotrimeric osmoporins as receptors to recognize target bacteria. PLoS Pathogens,12, e1005925 (2016)10.1371/journal.ppat.1005925505673427723824Search in Google Scholar

Bingle L.E., Bailey C.M., Pallen M.J.: Type VI secretion: a beginner’s guide. Curr. Opin. Microbiol.11, 3–8 (2008)10.1016/j.mib.2008.01.00618289922Search in Google Scholar

Blango M.G., Mulvey M.A.: Bacterial landlines: contact-dependent signaling in bacterial populations. Curr. Opin. Microbiol.12, 177–181 (2009)10.1016/j.mib.2009.01.011266872419246237Search in Google Scholar

Bondage D.D., Lin J.-S., Ma L.-S., Kuo C.-H., Lai E.-M.: VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc. Natl. Acad. Sci. USA, 113, E3931-40 (2016)10.1073/pnas.1600428113494147227313214Search in Google Scholar

Bröms J.E., Ishikawa T., Wai S.N., Sjöstedt A.: A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol.13:96, DOI:10.1186/1471-2180-13-96 (2013)10.1186/1471-2180-13-96365678523642157Search in Google Scholar

Brzozowska E., Bazan J., Gamian A.: Funkcje białek bakteriofagowych. Postepy Hig. Med. Dosw.65, 167–176 (2011)10.5604/17322693.93609021502693Search in Google Scholar

Cardarelli L., Saak C., Gibbs K.A.: Two proteins form a heteromeric bacterial self-recognition complex in which variable subdomains determine allele-restricted binding. mBio, 6, DOI:10.1128/mBio.00251-15 (2015)10.1128/mBio.00251-15447155926060269Search in Google Scholar

Carruthers M.D., Nicholson P.A., Tracy E.N., Munson R.S.: Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. PLoS ONE,8, e59388 (2013)10.1371/journal.pone.0059388360201423527179Search in Google Scholar

Chou S., Bui N.K., Russell A.B., Lexa K.W., Gardiner T.E., LeRoux M., Vollmer W., Mougous J.D.: Structure of a peptidoglycan amidase effector targeted to Gram-negative bacteria by the type VI secretion system. Cell Rep.1, 656–664 (2012)10.1016/j.celrep.2012.05.016340138422813741Search in Google Scholar

Cianfanelli F.R., Alcoforado Diniz J., Guo M., De Cesare V., Trost M., Coulthurst S.J.: VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathogens, 12, e1005735 (2016)10.1371/journal.ppat.1005735492487627352036Search in Google Scholar

Coulthurst S.J.: The type VI secretion system – a widespread and versatile cell targeting system. Res. Microbiol.164, 640–654 (2013)10.1016/j.resmic.2013.03.01723542428Search in Google Scholar

Diner E.J., Beck C.M., Webb J.S., Low D.A., Hayes C.S.: Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI). Genes Dev.26, 515–525 (2012)10.1101/gad.182345.111330598822333533Search in Google Scholar

Dong T.G., Ho B.T., Yoder-Himes D.R., Mekalanos J.J.: Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl. Acad. Sci. USA, 110, 2623–2628 (2013)10.1073/pnas.1222783110357494423362380Search in Google Scholar

English G., Trunk K., Rao V.A., Srikannathasan V., Hunter W.N., Coulthurst S.J.: New secreted toxins and immunity proteins encoded within the type VI secretion system gene cluster of Serratia marcescens. Mol. Microbiol.86, 921–936 (2012)10.1111/mmi.12028353378622957938Search in Google Scholar

Flaugnatti N., Journet L. i wsp.: A phospholipase A1 antibacterial type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol. Microbiol.99, 1099–1118 (2016)Search in Google Scholar

Foster K.R., Bell T.: Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol.22, 1845–1850 (2012)10.1016/j.cub.2012.08.00522959348Search in Google Scholar

Gallique M., Bouteiller M., Merieau A.: The type VI secretion system: A dynamic system for bacterial communication? Front. Microbiol.8, DOI:10.3389/fmicb.2017.01454 (2017)10.3389/fmicb.2017.01454553242928804481Search in Google Scholar

Gallique M., Decoin V., Barbey C., Rosay T., Feuilloley M.G.J., Orange N., Merieau A.: Contribution of the Pseudomonas fluorescens MFE01 type VI secretion system to biofilm formation. PLoS ONE,12, e0170770 (2017)10.1371/journal.pone.0170770525698928114423Search in Google Scholar

Garcia E.C., Anderson M.S., Hagar J.A., Cotter P.A.: Burkholderia BcpA mediates biofilm formation independently of interbacterial contact-dependent growth inhibition. Mol. Microbiol.89, 1213–1225 (2013)10.1111/mmi.12339378637023879629Search in Google Scholar

Garcia E.C., Perault A.I., Marlatt S.A., Cotter P.A.: Interbacterial signaling via Burkholderia contact-dependent growth inhibition system proteins. Proc. Natl. Acad. Sci. USA, 113, 8296–8301 (2016)10.1073/pnas.1606323113496117427335458Search in Google Scholar

Gerc A.J., Diepold A., Trunk K., Porter M., Rickman C., Armitage J.P., Stanley-Wall N.R., Coulthurst S.J.: Visualization of the Serratia type VI secretion system reveals unprovoked attacks and dynamic assembly. Cell Rep.12, 2131–2142 (2015)10.1016/j.celrep.2015.08.053459415926387948Search in Google Scholar

Green E.R., Mecsas J.: Bacterial secretion systems – an overview. Microbiol. Spectr.4, DOI:10.1128/microbiolspec (2016)10.1128/microbiolspecSearch in Google Scholar

Hachani A., Allsopp L.P., Oduko Y., Filloux A.: The VgrG proteins are “la carte” delivery systems for bacterial type VI effectors. J. Biol. Chem.289, 17872–17884 (2014)10.1074/jbc.M114.563429406721824794869Search in Google Scholar

Hayes C.S., Koskiniemi S., Ruhe Z.C., Poole S.J., Low D.A.: Mechanisms and biological roles of contact-dependent growth inhibition systems. Cold Spring Harb. Perspect. Med.4, DOI: 10.1101/cshperspect.a010025 (2014)10.1101/cshperspect.a010025390409324492845Search in Google Scholar

Hibbing M.E., Fuqua C., Parsek M.R., Peterson S.B.: Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol.8, 15–25 (2010)10.1038/nrmicro2259287926219946288Search in Google Scholar

Jamet A., Jousset A.B., Euphrasie D., Mukorako P., Boucharlat A., Ducousso A., Charbit A., Nassif X.: A new family of secreted toxins in pathogenic Neisseria species. PLoS Pathogens, 11, e1004592 (2015)10.1371/journal.ppat.1004592428760925569427Search in Google Scholar

Jamet A., Nassif X.: Characterization of the Maf family of polymorphic toxins in pathogenic Neisseria species. Microb. Cell, 2, 88–90 (2015)Search in Google Scholar

Jamet A., Nassif X.: New players in the toxin field: polymorphic toxin systems in bacteria. mBio, 6, DOI:10.1128/mBio.00285-15 (2015)10.1128/mBio.00285-15443606225944858Search in Google Scholar

Jones A.M., Garza-Sánchez F., So J., Hayes C.S., Low D.A.: Activation of contact-dependent antibacterial tRNase toxins by translation elongation factors. Proc. Natl. Acad. Sci. USA, 114, DOI:10.1073/pnas.1619273114 (2017)10.1073/pnas.1619273114534754028223500Search in Google Scholar

Jones C., Hachani A., Manoli E., Filloux A.: An rhs gene linked to the second type VI secretion cluster is a feature of the Pseudomonas aeruginosa strain PA14. J. Bacteriol.196, 800–810 (2014)10.1128/JB.00863-13391117624317402Search in Google Scholar

Kapitein N., Mogk A.: Type VI secretion system helps find a niche. Cell Host Microbe, 16, DOI:10.1016/j.chom.2014.06.012 (2014)10.1016/j.chom.2014.06.01225011102Search in Google Scholar

Khajanchi B.K., Sha J., Kozlova E.V., Erova T.E., Suarez G., Sierra J.C., Popov V.L., Horneman A. J., Chopra A.K.: N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology, 155, 3518–3531 (2009)10.1099/mic.0.031575-0288813119729404Search in Google Scholar

Kirchberger P.C., Unterweger D., Provenzano D., Pukatzki S., Boucher Y.: Sequential displacement of type VI secretion system effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Sci. Rep.7, DOI:10.1038/srep45133 (2017)10.1038/srep45133536108028327641Search in Google Scholar

Konovalova A., Søgaard-Andersen L.: Close encounters: Contact-dependent interactions in bacteria. Mol. Microbiol.81, 297–301 (2011)10.1111/j.1365-2958.2011.07711.x21651624Search in Google Scholar

Koskiniemi S., Garza-Sánchez F., Edman N., Chaudhuri S., Poole S.J., Manoil C., Hayes C.S., Low D.A.: Genetic analysis of the CDI pathway from Burkholderia pseudomallei 1026b. PLoS ONE,10, e0120265 (2015)10.1371/journal.pone.0120265436466925786241Search in Google Scholar

Koskiniemi S., Lamoureux J.G., Nikolakakis K.C., t’Kint de Roodenbeke C., Kaplan M.D., Low D.A, Hayes C.S.: Rhs proteins from diverse bacteria mediate intercellular competition. Proc. Natl. Acad. Sci. USA, 110, 7032–7037 (2013)10.1073/pnas.1300627110363778823572593Search in Google Scholar

Kube S., Wendler P.: Structural comparison of contractile nanomachines. AIMS Biophysics, 2, 88–115 (2015)10.3934/biophy.2015.2.88Search in Google Scholar

Kung V.L., Khare S., Stehlik C., Bacon E.M., Hughes A.J., Hauser A.R.: An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome. Proc. Natl. Acad. Sci. USA, 109, 1275–1280 (2012)10.1073/pnas.1109285109326832122232685Search in Google Scholar

Lazzaro M., Feldman M.F., Vescovi E.G.: A transcriptional regulatory mechanism finely tunes the firing of Type VI Secretion System in response to bacterial enemies. mBio, 8, DOI:10.1128/ mBio.00559-17 (2017)10.1128/mBio.00559-17556596128830939Search in Google Scholar

Leiman P.G., Basler M., Ramagopal U.A., Bonanno J.B., Sauder J.M., Pukatzki S., Burley S.K, Almo S.C., Mekalanos J.J.: Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl. Acad. Sci. USA, 106, 4154–4159 (2009)10.1073/pnas.0813360106265743519251641Search in Google Scholar

LeRoux M., Mougous J.D. i wsp.: Quantitative single-cell characterization of bacterial interactions. Proc. Natl. Acad. Sci. USA, 109: 19804–19809 (2012)10.1073/pnas.1213963109351172323150540Search in Google Scholar

Lesic B., Starkey M., He J., Hazan R., Rahme L.G.: Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology, 155, 2845–2855 (2009)10.1099/mic.0.029082-0288817519497948Search in Google Scholar

Li M., Le Trong I., Carl M.A., Larson E.T., Chou S., de Leon J.A., Dove S.L., Stenkamp R.E., Mougous J.D.: Structural basis for type VI secretion effector recognition by a cognate immunity protein. PLoS Pathogens, 8, e1002613 (2012)10.1371/journal.ppat.1002613332521322511866Search in Google Scholar

Liu L., Ye M., Li X., Li J., Deng Z., Yao Y.-F., Ou H.-Y.: Identification and characterization of an antibacterial Type VI Secretion System in the carbapenem-resistant strain Klebsiella pneumoniae HS11286. Front. Cellular Infect. Microbiol.7, DOI:10.3389/ fcimb.2017.00442 (2017)10.3389/fcimb.2017.00442564920529085808Search in Google Scholar

Lyons N.A., Kraigher B., Stefanic P., Mandic-Mulec I., Kolter R.: A combinatorial kin discrimination system in Bacillus subtilis. Curr. Biol.26, 733–742 (2016)10.1016/j.cub.2016.01.032480360626923784Search in Google Scholar

Ma J., Pan Z., Huang J., Sun M., Lu C., Yao H.: The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems. Virulence, 8, DOI:10.1080/21505594.2017.1279374 (2017)10.1080/21505594.2017.1279374571135228060574Search in Google Scholar

Ma J., Sun M., Dong W., Pan Z., Lu C., Yao H.: PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environment. Microbiol.19, 345–360 (2017)10.1111/1462-2920.1362127871130Search in Google Scholar

Ma L.S., Hachani A., Lin J.S., Filloux A., Lai E.M.: Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe, 16, 94–104 (2014)10.1016/j.chom.2014.06.002409638324981331Search in Google Scholar

Ma L.S., Narberhaus F., Lai E.M.: IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J. Biol. Chem.287, 15610–15621 (2012)10.1074/jbc.M111.301630334614122393043Search in Google Scholar

Majerczyk C., Schneider E., Greenberg E.P.: Quorum sensing control of type VI secretion factors restricts the proliferation of quorum-sensing mutants. eLife, 5, DOI:10.7554/eLife.14712 (2016)10.7554/eLife.14712486853427183270Search in Google Scholar

McNally L., Bernardy E., Thomas J., Kalziqi A., Pentz J.T., Brown S., Hammer B., Yunker P.Y., Ratcliff W.: Killing by Type VI secretion drives clonal phase separation and the evolution of cooperation. Nat. Commun.8, DOI:10.1101/063487 (2017)10.1101/063487Search in Google Scholar

Melvin J.A., Gaston J.R., Phillips S.N., Springer M.J., Marshall C.W., Shanks R.M.Q., Bomberger M.: Pseudomonas aeruginosa contact-dependent growth inhibition plays dual role in host-pathogen interactions. mSphere, 2, e00336-17 (2017)10.1128/mSphere.00336-17568791729152577Search in Google Scholar

Mercy C., Ize B., Salcedo S.P., de Bentzmann S., Bigot S.: Functional characterization of Pseudomonas contact dependent growth inhibition (CDI) systems. PloS One, 11, e0147435 (2016)10.1371/journal.pone.0147435472596326808644Search in Google Scholar

Morse R.P., Nikolakakis K.C., Willett J.L.E., Gerrick E., Low D.A., Hayes C.S., Goulding C.W.: Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems. Proc. Natl. Acad. Sci. USA, 109, 21480–21485 (2012)10.1073/pnas.1216238110353562223236156Search in Google Scholar

Morse R.P., Willett J.L.E., Johnson P.M., Zheng M., Credali A., Iniguez A., Nowick J.S., Hayes C.S., Goulding C.W.: Diversification of β-augmentation interactions between CDI toxin/ immunity proteins. J. Mol. Biol.427, 3766–3784 (2016)10.1016/j.jmb.2015.09.020465866726449640Search in Google Scholar

Myszka K., Czaczyk K.: Mechanizm quorum sensing jako czynnik regulujący wirulencję bakterii Gram-ujemnych. Postepy Hig. Med. Dosw.64, 582–589 (2010)Search in Google Scholar

Nazarov S., Schneider J.P., Brackmann M., Goldie K.N., Stahlberg H., Basler M.: Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end. The EMBO Journal,e201797103 (2017)Search in Google Scholar

Nguyen V.S., Cambillau C. i wsp.: Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex. Nat. Microbiol.2, DOI:10.1038/nmicrobiol.2017.103 (2017)10.1038/nmicrobiol.2017.10328650463Search in Google Scholar

Nikolakakis K.C., Low D.A. i wsp.: The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems. Mol. Microbiol.84, 516–529 (2012)Search in Google Scholar

Ogier J.C., Duvic B., Lanois A., Givaudan A., Gaudriault S.: A new member of the growing family of contact-dependent growth inhibition systems in Xenorhabdus doucetiae. PLoS ONE, 11, e0167443 (2016)10.1371/journal.pone.0167443513196227907104Search in Google Scholar

Peng Y., Tan C. i wsp.: Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia colitype VI secretion system. Sci. Rep.6, DOI: 10.1038/srep26816 (2016)10.1038/srep26816488254027229766Search in Google Scholar

Pukatzki S., McAuley S.B., Miyata S.T.: The type VI secretion system: translocation of effectors and effector-domains. Curr. Opin. Microbiol.12, 11–17 (2009)10.1016/j.mib.2008.11.01019162533Search in Google Scholar

Ray A., Schwartz N., de Souza Santos M., Zhang J., Orth K., Salomon D.: Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities. EMBO Reports, e201744226 (2017)10.15252/embr.201744226566659628912123Search in Google Scholar

Records A.R.: The Type VI Secretion System: A multipurpose delivery system with a phage-like machinery. Mol. Plant-Microbe Interact.24, 751–757 (2011)10.1094/MPMI-11-10-026221361789Search in Google Scholar

Rendueles O., Ghigo J.: Mechanisms of competition in biofilm bommunities. Microbiol. Spect.3, DOI:10.1128/microbiolspec. MB-0009-2014.f1 (2015)10.1128/microbiolspecSearch in Google Scholar

Røder H.L., Sørensen S.J., Burmølle M.: Studying bacterial multispecies biofilms: Where to start? Trends Microbiol.24, 503–513 (2016)10.1016/j.tim.2016.02.01927004827Search in Google Scholar

Ruhe Z.C., Nguyen J.Y., Beck C.M., Low D.A., Hayes C.S.: The proton-motive force is required for translocation of CDI toxins across the inner membrane of target bacteria. Mol. Microbiol.94466–481 (2014)10.1111/mmi.12779419198525174572Search in Google Scholar

Ruhe Z.C., Nguyen J.Y., Chen A.J., Leung N.Y., Hayes C.S., Low D.A.: CDI systems are stably maintained by a cell-contact mediated surveillance mechanism. PLoS Genetics,12, e1006145 (2016)10.1371/journal.pgen.1006145492705727355474Search in Google Scholar

Ruhe Z.C., Nguyen J.Y., Xiong J., Koskiniemi S., Beck C.M., Perkins B.R., Low D.A., Hayes C.S.: CdiA effectors use modular receptor-binding domains to recognize target bacteria. mBio, 8, . DOI:10.1128/mBio.00290-17 (2017)10.1128/mBio.00290-17537141428351921Search in Google Scholar

Ruhe Z.C., Townsley L., Wallace A.B., King A., Van der Woude M.W., Low D.A., Yildiz F.H., Hayes C.S.: CdiA promotes receptor-independent intercellular adhesion. Mol. Microbiol.98, 175–192 (2015)10.1111/mmi.13114469459126135212Search in Google Scholar

Ruhe Z.C., Wallace A.B., Low D.A., Hayes C.S.: Receptor polymorphism restricts contact-dependent growth inhibition to members of the same species. mBio, 4: DOI:10.1128/ mBio.00480-13 (2013)10.1128/mBio.00480-13373518123882017Search in Google Scholar

Ruiz F.M., Santillana E., Spínola-Amilibia M., Torreira E., Culebras E., Romero A.: Crystal structure of Hcp from Acineto bacter baumannii: A component of the type VI secretion system. PLoS ONE, 10, e0129691 (2015)10.1371/journal.pone.0129691446960726079269Search in Google Scholar

Russell A.B., Hood R.D., Bui N.K., Leroux M., Vollmer W., Mougous J.D.: Type VI secretion delivers bacteriolytic effectors to target cells. Nature, 475: 343–349 (2011)10.1038/nature10244314602021776080Search in Google Scholar

Russell A.B., LeRoux M., Hathazi K., Agnello D.M., Ishikawa T., Wiggins P.A., Wai S.N., Mougous J.D.: Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature, 496, 508–512 (2013)10.1038/nature12074365267823552891Search in Google Scholar

Saak C.C., Gibbs K.A.: The self-identity protein IdsD is communicated between cells in swarming Proteus mirabilis colonies. J. Bacteriol.198, 3278–3286 (2016)10.1128/JB.00402-16511693127672195Search in Google Scholar

Saak C.C., Zepeda-Rivera M.A., Gibbs K.A.: A single point mutation in a TssB / VipA homolog disrupts sheath formation in the type VI secretion system of Proteus mirabilis. PLoS ONE, 12, e0184797 (2017)10.1371/journal.pone.0184797561452428949977Search in Google Scholar

Salomon D., Orth K.: Type VI secretion system. Curr. Biol.25, DOI:10.1016/j.cub.2015.02.031 (2015)10.1016/j.cub.2015.02.03125829005Search in Google Scholar

Sana T.G., Hachani A., Bucior I., Soscia C., Garvis S., Termine E., Egel J., Filloux A., Bleves S.: The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and fur and modulates internalization in epithelial cells. J. Biol. Chem.287, 27095–27105 (2012)10.1074/jbc.M112.376368341105222665491Search in Google Scholar

Satpathy S., Sen S.K., Pattanaik S., Raut S.: Review on bacterial biofilm: An universal cause of contamination. Biocatal. Agric. Biotechnol.7, 56–66 (2016)10.1016/j.bcab.2016.05.002Search in Google Scholar

Sha J., Rosenzweig J.A., Kozlova E.V., Wang S., Erova T.E., Kirtley M.L., van Lier C.J., Chopra A.K.: Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology, 159, 1120–1135 (2013)10.1099/mic.0.063495-0370969423519162Search in Google Scholar

Shneider M.M., Buth S.A., Ho B.T., Basler M., Mekalanos J.J., Leiman P.G.: PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature,500, 350–353 (2013)10.1038/nature12453379257823925114Search in Google Scholar

Silverman J.M., Agnello D.M., Zheng H., Andrews B.T., Li M., Catalano C.E., Gonen T., Mougous J.D.: Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol. Cell, 51, 584–593 (2013)Search in Google Scholar

Silverman J.M., Brunet Y.R., Cascales E., Mougous J.D.: Structure and regulation of the Type VI Secretion System. Annu. Rev. Microbiol.66, 453–472 (2012)10.1146/annurev-micro-121809-151619359500422746332Search in Google Scholar

Stubbendieck R.M., Straight P.D.: Multifaceted interfaces of bacterial competition. J. Bacteriol.198, 2145–2155 (2016)10.1128/JB.00275-16496643927246570Search in Google Scholar

Tan K., Johnson P.M., Stols L., Boubion B., Eschenfeldt W., Babnigg G., Hayes C.S., Joachimiak A., Goulding C.W.: The structure of a contact-dependent growth-inhibition (CDI) immunity protein from Neisseria meningitidis MC58. Acta Crystallogr. F Struct. Biol. Commun.71, 702–709 (2015)10.1107/S2053230X15006585446133426057799Search in Google Scholar

Tang J.Y., Bullen N.P., Ahmad S., Whitney J.C.: Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J. Biol. Chem.2, 1504–1514 (2017)10.1074/jbc.RA117.000178579828129237732Search in Google Scholar

Tian Y., Zhao Y., Wu X., Liu F., Hu B., Walcott R.R.: The type VI protein secretion system contributes to biofilm formation and seed-to-seedling transmission of Acidovorax citrulli on melon. Mol. Plant Pathol.16, 38–47 (2015)10.1111/mpp.12159663831524863458Search in Google Scholar

Unterweger D., Miyata S.T., Bachmann V., Brooks T.M., Mullins T., Kostiuk B., Provenzano D., Pukatzki S.: The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat. Commun.5, DOI:10.1038/ncomms4549 (2014)10.1038/ncomms4549398881424686479Search in Google Scholar

Van Ulsen P., Rahman S., Jong W.S.P., Daleke-Schermerhorn M.H., Luirink J.: Type V secretion: From biogenesis to biotechnology. Biochim. Biophys. Acta, 8, 1592–1611 (2014)Search in Google Scholar

Vassallo C.N., Cao P., Conklin A., Finkelstein H., Hayes C.S., Wall D.: Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. eLife, 6, DOI:10.7554/eLife.29397 (2017)10.7554/eLife.29397556244528820387Search in Google Scholar

Velicer G.J., Plucain J.: Evolution: Bacterial territoriality as a byproduct of kin discriminatory warfare. Curr. Biol.26, DOI:10.1016/j.cub.2016.03.033 (2016)10.1016/j.cub.2016.03.03327166695Search in Google Scholar

Wang L., Qiu J. i wsp.: Cell density- and quorum sensing-dependent expression of type VI secretion system 2 in Vibrio parahaemolyticus. PLoS ONE, 8, e73363 (2013)10.1371/journal.pone.0073363374464323977385Search in Google Scholar

Webb J.S., Nikolakakis K.C., Willett J.L.E., Aoki S.K., Hayes C.S., Low D.A.: Delivery of CdiA nuclease toxins into target cells during contact-dependent growth inhibition. PLoS ONE, 8, e57609 (2013)10.1371/journal.pone.0057609358518023469034Search in Google Scholar

Weber B., Hasic M., Chen C., Wai S.N., Milton D.L.: Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ. Microbiol.11, 3018–3028 (2009)10.1111/j.1462-2920.2009.02005.x19624706Search in Google Scholar

Wenren L.M., Sullivan N.L., Cardarelli L.: Two independent pathways for self-recognition in Proteus mirabilis are linked by type VI-dependent export. mBio, 4, DOI:10.1128/mBio.00374-13. Editor (2013)10.1128/mBio.00374-13373518223882014Search in Google Scholar

Whitney J.C., Mougous J.D. i wsp.: Genetically distinct pathways guide effector export through the type VI secretion system. Mol. Microbiol.92, 529–542 (2014)Search in Google Scholar

Whitney J.C., Chou S., Russell A.B., Biboy J., Gardiner T.E., Ferrin M.A., Brittnacher M., Vollmer W., Mougous J.D.: Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J. Biol. Chem.288, 26616–26624 (2013)10.1074/jbc.M113.488320377220823878199Search in Google Scholar

Whitney J.C., Mougous J.D. i wsp.: A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. eLife, 6, DOI:10.7554/eLife.26938 (2017)10.7554/eLife.26938555571928696203Search in Google Scholar

Willett J.L.E., Gucinski G.C., Fatherree J.P., Low D.A., Hayes C.S.: Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Proc. Natl. Acad. Sci. USA, 112, 11341–1346 (2015)10.1073/pnas.1512124112456865226305955Search in Google Scholar

Willett J.L.E., Ruhe Z.C., Goulding C.W., Low D.A., Hayes C.S.: Contact-dependent growth inhibition (CDI) and CdiA/CdiB two-partner secretion proteins. J. Mol. Biol.427, 3754–4765 (2015)10.1016/j.jmb.2015.09.010465827326388411Search in Google Scholar

Yang L., Liu Y., Wu H., Høiby N., Molin S., Song Z.: Current understanding of multi-species biofilms. Int. J. Oral Sci. 3,74–81 (2011)10.4248/IJOS11027346988021485311Search in Google Scholar

Zhang D., de Souza R.F., Anantharaman V., Iyer L.M., Aravind L.: Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct, 7, DOI:10.1186/1745-6150-7-18 (2012)10.1186/1745-6150-7-18348239122731697Search in Google Scholar

Zhang W., Xu S., Li J., Shen X., Wang Y., Yuan Z.: Modulation of a thermoregulated type VI secretion system by ahl-dependent quorum sensing in Yersinia pseudotuberculosis. Arch. Microbiol.193, 351–363 (2011)10.1007/s00203-011-0680-221298257Search in Google Scholar

Zheng J., Shin O.S., Cameron D.E., Mekalanos J.J.: Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc. Natl. Acad. Sci. USA, 107, 21128–21133 (2010)10.1073/pnas.1014998107300025021084635Search in Google Scholar

Zoued A., Brunet Y.R., Durand E., Aschtgen M.S., Logger L., Douzi B., Journet L., Cambillau C., Cascales E.: Architecture and assembly of the type VI secretion system. Biochim. Biophys. Acta, 1843, 1664–1673 (2014)Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo