1. bookVolume 49 (2015): Edition 1 (December 2015)
Détails du magazine
License
Format
Magazine
eISSN
1899-7562
Première parution
13 Jan 2009
Périodicité
5 fois par an
Langues
Anglais
Accès libre

Central and Peripheral Fatigue During Resistance Exercise – A Critical Review

Publié en ligne: 30 Dec 2015
Volume & Edition: Volume 49 (2015) - Edition 1 (December 2015)
Pages: 159 - 169
Accepté: 01 Dec 2015
Détails du magazine
License
Format
Magazine
eISSN
1899-7562
Première parution
13 Jan 2009
Périodicité
5 fois par an
Langues
Anglais

Adams GR, Cheng DC, Haddad F Baldwin KM. Skeletal muscle hypertrophy in response to isometric, lengthening, and shortening training bouts of equivalent duration. J Appl Physiol, 2004; 96: 1613-1618.10.1152/japplphysiol.01162.200315075307Search in Google Scholar

Allen DG, Lamb GD, H. Westerblad H. Impaired calcium release during fatigue. J Appl Physiol, 2008; 104: 296-305.10.1152/japplphysiol.00908.200717962573Search in Google Scholar

Amman M, Proctor LT, Eldridge MW, Sebranek JJ, Pegelow DF, Dempsey JA. Somatosensory feedback from the limbs exerts inhibitory influences on central neural drive during whole body endurance exercise. J Appl Physiol, 2008; 105: 1714-1724.10.1152/japplphysiol.90456.2008261247518787091Search in Google Scholar

Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol, 2009; 587: 271-283.10.1113/jphysiol.2008.163303267004019015193Search in Google Scholar

Amann M, Sidhu SK, Weavil JC, Mangum TS, Venturelli M. Autonomic responses to exercise: Group III/IV muscle afferents and fatigue. Aut Neurosci Basic Clin 2015, 188, 19 -Ahizawa N, Fujimura R, Tokuyama K, Suzuki M. A bout of resistance exercise increases urinary calcium independently of osteoclastic activation in man. J Appl Physiol, 1997; 83: 1159-1163.10.1152/jappl.1997.83.4.11599338424Search in Google Scholar

Bangsbo J, Mohr M Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci, 2006; 24: 665-674.10.1080/0264041050048252916766496Search in Google Scholar

Brancaccio P, Lippi G, Maffuli N. Biochemical markers of muscular damage. Clin Chem Lab Med, 2010; 48: 757-767.10.1515/CCLM.2010.17920518645Search in Google Scholar

Banister EW, Cameron BJC. Exercise-induced hiperammonemia: peripheral and central effect. Int J Sports Med, 1990; 11: S129-S142.10.1055/s-2007-10248642193891Search in Google Scholar

Bequet F, Gomez-Merino D, Berthelot M, Guezennec C. Evidance that brain glucose availability influences exercise-enhanced extracellular 5-Ht level in hippocampus: a microdialysis study in exercising rats. Acta Physiol Scand, 2002;176: 65-69.10.1046/j.1365-201X.2002.01015.x12193220Search in Google Scholar

Brancaccio P, Maffuli N, Limongelli FM. Creatine kinase monitoring in sport medicine. Br Med Bull, 2007; 81-82: 209-230.10.1093/bmb/ldm01417569697Search in Google Scholar

Brian KM, John QC, Daniel BL, Gretchen OD, Michael ER, Kyle TJ, Price BM. Autonomic responces to and acute bout of high-intensity body weight resistance exercise vs. treadmill running. J Strength Cond Res, 2015; [Epub ahesd of print].Search in Google Scholar

Brouns F, Beckers E, Wangenmakers A, Saris W. Ammonia accumulation during highly intensive longlasting cycling: individual observation. Int J Sports Med, 1990; 11: 78-84.10.1055/s-2007-10248582361783Search in Google Scholar

Bompa TO. Periodization theory and methodology of training. Champaign, IL. Human Kinetics 2005.Search in Google Scholar

Borresen J, and Lambert MI. The quantification of training load, the training response and the effect on performance. Sports Med, 2009; 39: 779-795.10.2165/11317780-000000000-0000019691366Search in Google Scholar

Bouret S, Sara SJ. Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci, 2005; 28: 574-582.10.1016/j.tins.2005.09.00216165227Search in Google Scholar

Broxterman RM, Craig JC, Smith JR, Wilcox SL, Jia C, Warren S, Barstow TJ. Influence of blood flow occlusion on the development of peripheral and central fatigue during small muscle mass handgrip exercise. J Physiol, 2015; 593: 4043-4054.10.1113/JP270424457558526104881Search in Google Scholar

Buono MJ, Clancy TR, Cook JR. Blood lactate and ammonium ion accumulation during graded exercise in humans. J Appl Physiol, 1984; 57: 135-139.10.1152/jappl.1984.57.1.1356469774Search in Google Scholar

Burnes LA, Kolkerb SJ, Danielson JF, Walder RY, Sluka KA. Enhanced muscle fatigue occurs in male but not female ASIC-/- mice. Am J Physiol Regyl Integr Comp Physiol, 2008; 294: 1347-1355.10.1152/ajpregu.00687.2007274666318305024Search in Google Scholar

Bushinsky DA, Krieger NS, Geisser DI, Crossman EB, Coe FL. Efects of pH on bone calcium and proton fluxes in vitro. Am J Physiol Renal Fluid Electrolyte Physiol, 1983; 245: 204 -209.10.1152/ajprenal.1983.245.2.F2046881337Search in Google Scholar

Chalimoniuk M, Chrapusta SJ, Lukacova N, Chalimoniuk M. Endurance training upregulates the nitric oxide/soluble guanylyl cyclase/cyclic guanosine 3’,5’- monophosphate pathway in the striatum, midbrain and cerebellum of male rats. Brain Res, 2015; 1619: 29-40.10.1016/j.brainres.2015.05.02026006108Search in Google Scholar

Chalimoniuk M, Wroński Z, Gilewski K, Stolecka A, Langfort J. Does exercise training affect NO/GC/cGMP pathway in the brain? J Hum Kinet, 2005; 13: 27-40.Search in Google Scholar

Costa Ec, Moreira A, Cavalcani B, Krinski K, Acki MS. Effect of unilateral and bilateral resistance exercise on maximal voluntary strength, total volume of load lifted, and perceptual and metabolic responses. Biol Sport, 2015; 32: 35-40.Search in Google Scholar

Czarnowski D, Górski J. Sweat ammonia excretion during submaximal cycling exercise. J Appl Physiol, 1991; 70: 371-374.10.1152/jappl.1991.70.1.3712010396Search in Google Scholar

Czarnowski D, Górski J, Joźwiuk J, Boroń-Kaczmarska A. Plasma ammonia is the principal source of ammonia in sweat. Eur J Physiol Occup Physiol, 1992; 65: 135-137.10.1007/BF007050701396636Search in Google Scholar

Czarnowski D, Langfort J, Pilis W, Górski J. Effect of a low-carbohydrate diet on plasma and sweat ammonia concentrations during prolonged nonexhausting exercise. Eur J Appl Physiol, 1995; 70: 70-74.10.1007/BF006018117729442Search in Google Scholar

da Luz CR, Nicastro H, Zanchi NE, Chaves DF, Lancha AH Jr. Potential therapeutic effects of branchedchain amino acids supplemenytation on resistance exercise-based muscle damage in humans. J Int Soc Sports Nutr, 2011; 8:23-27.10.1186/1550-2783-8-23326181122168756Search in Google Scholar

Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, Timmons JA, Phillips SM. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol, 2011; 110: 309-317.10.1152/japplphysiol.00901.201021030674Search in Google Scholar

Dawson MJ, Gadian DG, Wilkie DR. Muscle fatigue investigated by phosphorus nuclear magnetic resonance. Nature, 1978; 274: 861-866.10.1038/274861a0308189Search in Google Scholar

Decherchi P, Dousset E. Role of metabosensitive afferent fibers in neuromuscular adaptive mechanisms. Can J Neurol Sci, 2003; 30: 91-97.10.1017/S031716710005334827983464Search in Google Scholar

Dudley GA, Terjung RL. Influence of aerobic metabolism on IMP accumulation in fast-twich muscle. Am J Physiol, 1985; 248: 37-42.10.1152/ajpcell.1985.248.1.C373966541Search in Google Scholar

Dunn AL, Reigle TG, Youngstedt SD, Armstrong RB, Dishman RK. Brain norepinephrine and metabolites after treadmill training and wheel running inrats. Med Sci Sports Exerc, 1996; 28: 204-209.10.1097/00005768-199602000-000088775155Search in Google Scholar

Ebrahimi S, Rasshidy-Pour A, Vafai AA, Akhavan MM. Central bata-adrenergic receptors play an important role in the enhancing effect of voluntary exercise on learning memory in rat. Behav Brain Res, 2010; 208: 189-19310.1016/j.bbr.2009.11.03219941907Search in Google Scholar

Enoca RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol, 2008; 586: 11-23.10.1113/jphysiol.2007.139477237556517702815Search in Google Scholar

Farup J, de Paoli F, Bjerg K, Riis S, Ringgard S, Vissing K. Blood flow restricted and traditional resistance training performed to fatigue produced equal muscle hypertrophy. Scand J Med Sci Sports, 2015; 25(6): 754-763.10.1111/sms.1239625603897Search in Google Scholar

Finsterer J. Biomarkers of peripherial muscle fatigue during exercise. BMC Musculoskeletal Disord, 2012; 13: 2018.10.1186/1471-2474-13-218353447923136874Search in Google Scholar

Fry RW, Morton AR, Keast D. Overtraining in athletes. An update. Sports Med, 1991; 12: 32-65.10.2165/00007256-199112010-000041925188Search in Google Scholar

Galdino GS, Xavier CH, Almeida R, Silva G, Fontes MA, Menezes G, Duarte ID, Perez AC. The nitric oxide/cGMPKATP pathway mediates systemic and central antinocipation induced by resistance exercise in rats. Int J Neurosci, 2015; 125: 765-763.10.3109/00207454.2014.97025625271801Search in Google Scholar

Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev, 2001; 81: 1725-1789.10.1152/physrev.2001.81.4.172511581501Search in Google Scholar

Green HJ. Mechanisms of muscle fatigue in intense exercise. J Sports Sci, 1997; 15: 247-258.10.1080/0264041973672549232550Search in Google Scholar

Green J, Kleeman R. Role of bone in regulation of systemic acid-base balance. Kidney Int, 1991; 39: 9-26.10.1038/ki.1991.21706001Search in Google Scholar

Guertin PA. Central pattern generator for locomotion: anatomical, physiological and pathphysiological considerations. Front Neurol, 2013; 3: 1-15.10.3389/fneur.2012.00183356743523403923Search in Google Scholar

Haouzi P, Hill JM, Lewis BK, Kaufman MP. Responces of group III and IV muscle afferents to distension of the peripheral vascular bed. J Appl Physiol, 1999; 87: 545-553.10.1152/jappl.1999.87.2.54510444611Search in Google Scholar

Hayes SG, McxCord JL, Koba S Kaufman MP. Gadolinium inhibits group III but not group IV muscle afferents responses to dynamic exercise J Physiol, 2009; 587: 873-882.10.1113/jphysiol.2008.164640266997619103679Search in Google Scholar

Hivonen J, Rehunen S, Rusko H, Harkonen M, Breakdown of high-energy phosphate compouds and lactate accumulation during short supramaximal exercise. Eur J Appl Physiol Occup Physiol, 1987; 56: 253-259.10.1007/BF006908893569234Search in Google Scholar

Hortobagyi T, Hill JP Houmard JA, Fraser DD, Lambert NJ, Israel RG. Adaptive response to muscle lengthening and shortening in humans. J Appl Physiol, 1996; 80: 765-772.10.1152/jappl.1996.80.3.7658964735Search in Google Scholar

Jackman SH, Witard OC, Jeukendrup AE, Tipton KD. Branched-chain amino acid ingestion can ameliorate soreness from eccentric exercise. Med Sci Sports Exerc, 2010; 42: 962-970.10.1249/MSS.0b013e3181c1b79819997002Search in Google Scholar

Jankowski MP, Rau KK, Ekmann KM, Anderson CE, Koerber HR. Comprehensive phenotyping of group III and IV muscle afferents in mouse J Neurophysiol, 2013; 109: 2374-23-81.10.1152/jn.01067.2012365221923427306Search in Google Scholar

Jansson E, Dudley GA, Norman B, Tesch PA. ATP and IMP in single human skeletal muscle fibres after high intensity exercise. Clin Physiol, 1987; 7: 337-345.10.1111/j.1475-097X.1987.tb00177.xSearch in Google Scholar

Jones AM, Wilkerson DP, DiMenna FJ, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol, 2008; 294: 585- 593.10.1152/ajpregu.00731.200718056980Search in Google Scholar

Johnson MB, Thiese SM. A review of overtraining syndrome - recognizing the signs and symptoms. J Athl Train, 1992; 27: 352-354.Search in Google Scholar

Karatzaferi C, de Haan A, Ferguson RA, van Mechelen W, Sargent AJ. Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Pflugers Arch, 2001; 442: 467-474.10.1007/s00424010055211484780Search in Google Scholar

Karatzaferi C, de Haan A, van Mechelen W, Sargent AJ. Mmetabolism changes in single human fibers during brief maximal exercise. Exp Physiol, 2001; 86: 411-415.10.1113/eph860222311471535Search in Google Scholar

Koch AJ, Pereira R, Machado M. The creatine kinase response to resistance exercise. J Musculoskel Neuronal Interact, 2014; 14: 68-77.Search in Google Scholar

Komi PV, Tesch PA. EMG frequency spectrum, muscle structure, and fatigue during dynamic contraction in man. Eur J Appl Physiol Occup Physiol, 1979; 42: 41-50.10.1007/BF00421103499196Search in Google Scholar

Kreher JB, Schwartz JB. Overtraining syndrome: a practical guide. Sports Health, 2012; 4: 128-138.10.1177/1941738111434406343591023016079Search in Google Scholar

Keyser RE. Peripheral fatigue: high-energy phosphates and hydrogen ions. PM&R, 2010; 2: 347-358.10.1016/j.pmrj.2010.04.00920656616Search in Google Scholar

Langfort J, Czarnowski D, Zendzian-Piotrowska M, Zarzeczny R, Górski J. Short-term low carbohydrate diet dissociates lactate and ammonia thresholds in men. J Strength Cond Res, 2004; 18: 260-265.Search in Google Scholar

Laurin J, Pertici V, Dousset E, Marquwste T, Decherchi P. Group III and IV muscle afferents: role on central motor drive and clinical implications. Neurosciences, 2015; 290: 543-551.10.1016/j.neuroscience.2015.01.06525659344Search in Google Scholar

Lydakis C, Momen A, Blaha C, Gugoff S, Gray K, Herr M, Leuenberger UA, Sinoway LI. Changes of central haemodynamic parameters during mental stress and acute bouts of static and dynamic exercise. J Hum Hypertens, 2008; 22: 320-328.10.1038/jhh.2008.418273040Search in Google Scholar

Machado M, Willardson JM. Short recovery augments magnitude of muscle damage in high responders. Med Sci Sports Exerc, 2010; 42: 1370-1374.10.1249/MSS.0b013e3181ca7e1620019640Search in Google Scholar

Meeusen R, Watson P. Amino acid and the brain: do they play a role in “central fatigue”? Int J Sport Nutr Exerc Metab, 2007; 17: 37-46.10.1123/ijsnem.17.s1.s3718577773Search in Google Scholar

McRae PG, Spirduso WW, Walters TJ, Farrar RP, Wilcox RE. Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats. Psychopharmacology (Berl), 1987; 92: 236-240.10.1007/BF001779223110847Search in Google Scholar

Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF. Central fatigue: the serotonin hypothesis and beyond. Sports Med, 2006; 36: 881-909.10.2165/00007256-200636100-0000617004850Search in Google Scholar

Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF. Brain neurotransmitters in fatigue and overtraining. Appl Physiol Nutr Metab, 2007; 32: 857-864.10.1139/H07-08018059610Search in Google Scholar

Meyer RA, Dudley GA, Terjung RL. Ammonia and IMP in different skeletal muscle fibers after exercise in rats. J Appl Physiol, 1980; 49: 1037-1341.10.1152/jappl.1980.49.6.10377440292Search in Google Scholar

Mense S. Muscle pain: mechanisms and clinical significance. Dtsch Arztebl Int, 2008; 105: 214-219.10.3238/arztebl.2008.0510cSearch in Google Scholar

Mohr M, Rasmussen P, Drust B, Nielsen B, Nybo L. Environmental heat stress, hyperammonemia and nucleotide metabolism during intermittent exercise. Eur J Appl Physiol, 2006; 97: 89 - 95.10.1007/s00421-006-0152-616485104Search in Google Scholar

Murphy MN, MizunoM, Mitchell JH, Smith SA. Cardiovascular regulation by skeletal muscle reflexes in health and disesase. Am J. Physiol Heart Circ Physsiol, 2011; 301: 1191-1204.10.1152/ajpheart.00208.2011319743121841019Search in Google Scholar

Newsholme EA, Blomstrand E, Hassmen P, Ekblom B. Physical and mental fatigue: do changes in plasma amino acids play a role? Biochem Soc Trans, 1991; 19: 358-362.10.1042/bst01903581679730Search in Google Scholar

Niewiadomski W, Laskowska D, Gąsiorowska A, Cybulski G, Strasz A, Langfort J. Determination and prediction of One Repetition Maximum (1RM): Safety consideration. J Hum Kinet, 2008; 19: 109-120.10.2478/v10078-008-0008-8Search in Google Scholar

Nosaka K, Clarkson PM. Relationship between post-exercise plasma CK elevation and muscle mass involved in the exercise. Int J Sports Med, 1992; 13: 471-475.10.1055/s-2007-10213001428378Search in Google Scholar

Noakes TD. Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure protection of whole body homeostasis. Front Physiol, 2012; 3: 1-13.10.3389/fphys.2012.00082332392222514538Search in Google Scholar

Nybol L, Dalsgaard MK, Steensberg A, Moller K, Secher NS. Cerebral ammonia uptake and accumulating during prolonged exercise. J Physiol, 2005; 15: 285-290.10.1113/jphysiol.2004.075838166555815611036Search in Google Scholar

Peinado AB, Rojo JJ, Calderon FJ, Maffulli N. Responses to increasing exercise upon reaching the anaerobic threshold, and their control by the central nervous system. BMC Sports Sci Med Rehab, 2014; 6: 17.10.1186/2052-1847-6-17401664224818009Search in Google Scholar

Poole DC. Resolving the determinants of high-intensity exercise performance. Exp Physiol, 2008; 94: 197-198.10.1113/expphysiol.2008.04584919144747Search in Google Scholar

Ribeiro V, Pereira R, Machado M. resistance-exercise induced microinjures do not depend on 1 or 3 minutes rest time interval between series. Int J Sports Sci, 2008; 13: 44-53.Search in Google Scholar

Rodriguez BM, Dantas E, deSalles BF, Miranda H, Koch AJ, WillardsonJM, Simao R. Creatine kinase and lactate dehydrogenase responses after upperbody resistance exercise with different rest intervals. J Strength Cond Res, 2010; 24: 1657-1662.10.1519/JSC.0b013e3181d8e6b120508471Search in Google Scholar

Romer LM, Haverkamp HC, Amann M, Lowering AT, Pegelow DF, Dempsey JA. Effect of acute severe hypoxia on peripherial fatigue and endurance capacity in healthy humans. Am J Physiol Regul Integr Comp Physiol, 2007; 292: R598-R606.10.1152/ajpregu.00269.200616959862Search in Google Scholar

Romer LM, Haverkamp HC, Lowering AT, Pegelow DF, Dempsey JA. Effect of exercise-induced hypoxemia on quadriceps muscle fatigue in healthy on quadriceps muscle fatigue in healthy humans. Am J Physiol Regul Integr Comp Physiol, 2006; 290: 365-375.10.1152/ajpregu.00332.2005Search in Google Scholar

Romero-Gomez M, Jover M, Galan JJ, Ruiz A. Gut ammonia production and its modulation. Metab Brain Dis, 2009; 24: 147-157.10.1007/s11011-008-9124-3Search in Google Scholar

Rotto DM, Kaufman MP. Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. J Appl Physiol, 1988; 64: 2306-2313.10.1152/jappl.1988.64.6.2306Search in Google Scholar

Scale DG. Neural adaptations to resistance training. Med Sci Sports Exerc, 1998; 20(suppl): 35-145.Search in Google Scholar

Sale DG. Influence of exercise and training on motor unit activation. Exerc Sport Sci Rev, 1987; 15: 95-151.10.1249/00003677-198700150-00008Search in Google Scholar

Sale DG, Moroz DE, McKelvie RS, MacDougall JD, McCartney N. Comparison of blood pressure response to isokinetic and weight-lifting exercise. J Appl Physiol Occup Physiol, 1993; 19: 60-7410.1007/BF00376653Search in Google Scholar

Sarbadadhikari SN, Saha AK. Moderate exercise and chronic stress produce counteractive effects on different areas of the brain by acting through various neurotransmitter receptor subtypes: A hypothesis. Theor Biol Med Model, 2006; 3: 1-18.Search in Google Scholar

Scharf HP, Eckhardt R, Maurus M, Puhl W. Metabolic and hemodynamic changes during isokinetic muscle training. A controlled clinical trial. Int J Spots Med, 1994; 15: 56-59.10.1055/s-2007-1021111Search in Google Scholar

Shimomura Y, Kobayashi H, Mawatari K, Akita K, Inagurma A, Watanabe S., Bajotto G, Sato J. Effects of squat exercise and branched-chain amino acid supplementation on plasma free amino acid concentration in young women. J Nutr Sci Vitaminal (Tokyo), 2009; 55: 288-291.10.3177/jnsv.55.288Search in Google Scholar

Sorichter S, Puschendorf B, Mair J. Sceletal muscle injury induced by eccentric muscle action: muscle proteins as markers of muscle fiber injury. Exerc Immunol Rev, 1999; 5: 5-21.Search in Google Scholar

Sutoo D, Akiyama K. Regulation of brain function by exercise. Neurobiol Dis, 2003; 13: 1-14.10.1016/S0969-9961(03)00030-5Search in Google Scholar

Takada S, Okita K, Suga T, Omokawa M, Kadoguchi T, Sato T, Takahashi M, Yokota T, Hirabayashi K, Morita N, Horiuchi M, Kinugawa S, Tsutsui H. Low-intensity exercise can increase muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. J Appl Physiol, 2012; 113: 199-205.10.1152/japplphysiol.00149.201222628373Search in Google Scholar

Taylor JL, Gandevia SC. A comparison of central aspects of fatigue in submaximal and maximal voluntary contraction. J Appl Physiol, 2008; 104: 542-550.10.1152/japplphysiol.01053.200718032577Search in Google Scholar

Taylor JL, Petersen N, Butler JE, Gandevia SC. Ischemia after exercise does not reduce responses of human motoneurons to cortical and corticospinal tract stimulation. J Appl Physiol, 2000; 525: 793-801.Search in Google Scholar

Tesch PA, Colliander EB, Kaiser P. Muscle metabolism during intense, heavy-resistance exercise. Eur J Appl Physiol Occup Physiol, 1986; 55: 362-366.10.1007/BF004227343758035Search in Google Scholar

Vanhatalo A, Fulford J, DiMenna FJ, Jones AM. Influence of hyperoxia on muscle metabolic responses and the power-duration work relationship during severe-intensity exercise in humans: a 31Pmagnetic resonance spectroscopy study. Exp Physiol, 2010; 95: 528-540.10.1113/expphysiol.2009.05050020028850Search in Google Scholar

Webster MJ, Webster MN, Crawford RE, Gladden LB. Effect of sodium bicarbonate ingestion on exhaustive resistance exercise performance. Med Sci Sports Exerc, 1993, 25: 960-965.10.1249/00005768-199308000-00012Search in Google Scholar

Werborn M, Augustsson J, Thorner R. The influence of frequency, intensity, volume and mode of strength traning on whole muscle cross-sectional area in humans. Sports Med, 2007; 37: 225-264.10.2165/00007256-200737030-0000417326698Search in Google Scholar

Zatsiorsky VM, Kraemer WJ. Science and practice of strength trasining. 2nd ed. Champaign, IL: Human Kinetics, 2006.Search in Google Scholar

Zebrowska A, Gasior Z, Jastrzebski D. Cardiovascular effects of the Valsalva Maneuver during static arm exercise in elite powerlifting athletes. Adv Exp Med Biol, 2013a; 755: 335-42.10.1007/978-94-007-4546-9_4222826084Search in Google Scholar

Zebrowska A, Waskiewicz Z, Zajac A. IGF-1 response to arm exercise with eccentric and concentric muscle contraction in resistance trained athletes. J Sports Med, 2013b; 34(2): 116-22 10.1055/s-0032-132172022960989Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo