1. bookVolumen 28 (2022): Edición 3 (September 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2353-7779
Primera edición
30 Mar 2018
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Pro-ecological possibilities of using metallurgical waste in the production of aggregates

Publicado en línea: 05 Aug 2022
Volumen & Edición: Volumen 28 (2022) - Edición 3 (September 2022)
Páginas: 252 - 256
Recibido: 04 Apr 2022
Aceptado: 08 Jun 2022
Detalles de la revista
License
Formato
Revista
eISSN
2353-7779
Primera edición
30 Mar 2018
Calendario de la edición
4 veces al año
Idiomas
Inglés

Alwaeli, M., Gołaszewski, J., Niesler, M., Pizoń, J., Gołaszewska, M., 2020. Recycle option for metallurgical sludge waste as a partial replacement for natural sand in mortars containing CSA cement to save the environment and natural resources. Journal of Hazardous Materials, 398, 23101, DOI: 10.1016/j.jhazmat.2020.12310132768842 Abierto DOISearch in Google Scholar

Baricova, D., Pribulova, A., Futas, P., 2011. Analysis of Metallurgical Slags Utilization in the Road Engineering. 11th International Multidisciplinary Scientific GeoConference, 3, 785-791.10.5593/sgem2011/s21.101 Search in Google Scholar

Council Directive 91/271/EEC of 21 May 1991 concerning urban waste-water treatment and Directive 2010/75/eu of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Search in Google Scholar

Dohojda, M., Rubin J. A., 2009. Promieniotwórczość naturalna wybranych kruszyw budowlanych. Materiały ceramiczne, 61(1), 55-58. Search in Google Scholar

EN 1483:2007. Water quality. Determination of mercury. Search in Google Scholar

EN 1744-3:2002. Tests for chemical properties of aggregates – Part 3: Preparation of eluates by leaching of aggregates. Search in Google Scholar

EN 12620:2002+A1:2008. Aggregates for concrete. Search in Google Scholar

EN 13043:2013. Aggregates for bituminous mixtures and surface treatments for roads, airfields and other trafficked areas. Search in Google Scholar

EN 13055:2016. Lightweight aggregates. Search in Google Scholar

EN 13139:2013. Aggregates for mortar. Search in Google Scholar

EN 13242:2013. Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction. Search in Google Scholar

EN 13383-1:2013. Armourstone – Part 1: Specification. Search in Google Scholar

EN 13450:2013. Aggregates for railway ballast. Search in Google Scholar

Góralczyk, S., Kukielska D., 2011. Produkcja kruszyw z surowców wtórnych. Kruszywa wtórne, 33-38. Search in Google Scholar

https://poradnik.pkt.pl/inne/w-jaki-sposob-najlepiej-wykorzystac-materialyzuzlowe-ze-starych-hald (10.03.2022) Search in Google Scholar

https://harscometals.pl/kruszywa-hutnicze/ (10.03.2022) Search in Google Scholar

Ilutiu - Varvara D., 2016. A researching the hazardous potential of metallurgical solid wastes. Polish Journal of Environmental Studies, 25(1), 147-152, DOI: 10.15244/pjoes/60178 Abierto DOISearch in Google Scholar

ISO 10304-1:2007.Water quality – Determination of dissolved anions by liquid chromatography of ions – Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate. Search in Google Scholar

ISO 10523:2008. Water quality – Determination of pH. Search in Google Scholar

ISO 11885:2007. Water quality – Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). Determination of antimony, barium, cadmium, chromium, copper, molybdenum, nickel, lead, zinc. Search in Google Scholar

ISO 11969:1999. Water quality – Determination of arsenic – Atomic absorption spectrometric method (hydride technique). Search in Google Scholar

Jonczy, I., Huber, M., Lata, L., 2014. Zeszklone odpady hutnicze po produkcji cynku i ołowiu ze zwałowiska w Rudzie Śląskiej w aspekcie badań mineralogiczno-chemicznych. Mineral Resources Management, 30(1), 161-174.10.2478/gospo-2014-0008 Search in Google Scholar

Jursova, S., 2010. Metallurgical waste and possibilities of its processing, 19th International Conference on Metallurgy and Materials. Brno, Tanger, 115-120. Search in Google Scholar

Kozioł, W., Baic, I., Machniak, Ł., 2016. Production and Applicatikon of Aggregates Made of Waste Recyclabes. Annual Set The Environment Protection, 18, 831-849. Search in Google Scholar

Lis, T., Nowacki, K., 2012. Options of utilizing steelmaking dust in a nonmetallurgical industry. Metalurgija, 51(2), 257-260. Search in Google Scholar

Matinde, E., Simate, G.S., Ndlovu, S., 2018. Mining and metallurgical wastes: a review of recycling and re-use practices. Journal of the Southern African Institute of Mining and Metallurgy, 118(8), 825-844.10.17159/2411-9717/2018/v118n8a5 Search in Google Scholar

Milosan, I., Derczeni, R.A., 2013. Some Aspects About the Manufacturing of the Metallurgical Waste. Metalurgia International, 18, 159-162. Search in Google Scholar

Pitak, N.M., Parsons, M.B., Seal, R.R., 2015. Characteristics and environmental aspects of slag: A review, Applied Geochemistry, 57, 236-266.10.1016/j.apgeochem.2014.04.009 Search in Google Scholar

Pizoń, J., Gołaszewski, J., Alwaeli, M., Szwan, P., 2020. Properties of Concrete with Recycled Concrete Aggregate Containing Metallurgical Sludge Waste. Materials 13, 1448, DOI: 10.3390/ma13061448714245832235790 Abierto DOISearch in Google Scholar

Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 march 2011 laying down harmonised conditions for the marketing of construction products and repealing council directive 89/106/EEC. Search in Google Scholar

Seco, A., Echeverría, A.M., Marcelino, S., García, B., Espuelas, S., 2020. Characterization of Fresh and Cured Properties of Polymer Concretes Based on Two Metallurgical Wastes. Applied Sciences 10, 825, DOI: 10.3390/app10030825 Abierto DOISearch in Google Scholar

Soultana, A., Valouma, A., Bartzas, G., Komnitsas, K., 2019. Properties of Inorganic Polymers Produced from Brick Waste and Metallurgical Slag, Minerals, 9, 551. DOI: 10.3390/min9090551 Abierto DOISearch in Google Scholar

Suvorova, O.V., Selivanova, E.A., Mikhailova, J.A., Masloboev, V.A., Makarov, D.V., 2020. Ceramic Products from Mining and Metallurgical Waste. Applied Sciences 10, 3515, DOI: 10.3390/app10103515 Abierto DOISearch in Google Scholar

Wowkonowicz, P., Bojanowicz-Bablok, A., Gworek, B., 2018. Wykorzystanie odpadów z przemysłu wydobywczego i hutnictwa w drogownictwie, Rocznik Ochrona Środowiska, 20, 1335-1349. Search in Google Scholar

Xu, D. L., Li, H., 2006. Metallurgical slags, fly ash and coal waste – The future resources for eco-building materials, Xian International Conference on Architecture and Technology, 479-496. Search in Google Scholar

Yang, S. J., et al., 2012. Intensive Development and Comprehensive Utilization of Metallurgical Slag, Applied Mechanics and Materials, 174-177, 1424-1428. DOI: 10.4028/www-1scientific-1net-1pikx7hw807b2.han.polsl.pl/amm.174-177.1424. Abierto DOISearch in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo