1. bookVolumen 48 (2011): Edición 2 (April 2011)
Detalles de la revista
License
Formato
Revista
eISSN
2255-8896
ISSN
0868-8257
Primera edición
18 Mar 2008
Calendario de la edición
6 veces al año
Idiomas
Inglés
Acceso abierto

Laser-Micro/Nanofabricated 3D Polymers for Tissue Engineering Applications

Detalles de la revista
License
Formato
Revista
eISSN
2255-8896
ISSN
0868-8257
Primera edición
18 Mar 2008
Calendario de la edición
6 veces al año
Idiomas
Inglés

Farsari, M., & Chichkov, B.N. (2009). Materials processing: two-photon fabrication. Nat. Photonics, 3, 450-452.10.1038/nphoton.2009.131Search in Google Scholar

Ostendorf, A., & Chichkov, B.N. (2006). Two-photon polymerization: a new approach to micromachining. Photon. Spectra, 40 (10), 72-80.Search in Google Scholar

Naulleau, P.P., Anderson, C.N., Chiu, J., Denham, P., George, S., Goldberg, K.A., Goldstein, M., Hoef, B., Hudyma, R., Jones, G., Koh, C., La Fontaine, B., Ma, A., Montgomery, W., Niakoula, D., Park, J., Wallow, T., & Wurm, S. (2009). 22-nm half-pitch extreme ultraviolet node development as the SEMATECH Berkeley microfield exposure tool. Microelectron. Eng., 86 (4-6), 448-455.10.1016/j.mee.2009.03.013Search in Google Scholar

Sunne, G.R. (2008). Electron beam lithography for nanofabrication. PhD thesis, University of Barcelona (Barcelona), 17-21.Search in Google Scholar

Schift, H. (2008). Nanoimprint lithography: an old story in modern times? (a review). J. Vac. Sci. Technol., B 26 (2), 458-480.10.1116/1.2890972Search in Google Scholar

Rousset, S., & Ortega, E. (2006). Self-organized nanostructures. J. Phys.: Condens. Matter, 18 (13).Search in Google Scholar

Xia, Y., & Whitesides, G.M. (1998). Soft lithography. Ann. Rev. Mater. Sci., 28 (1), 153-184.10.1146/annurev.matsci.28.1.153Search in Google Scholar

Stampfl, J., Baudis, S., Heller, C., Liska, R., Neumeister, A., Kling, R., Ostendorf, A., & Spitzbart, M. (2008). Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. J. Micromech. Microeng., 18 (12), 125014.10.1088/0960-1317/18/12/125014Search in Google Scholar

Walther, M., Ortner, A., Meier, H., Löffelmann, U., Smith, P. J., & Korvink, J. G. (2009). Terahertz metamaterials fabricated by inkjet printing. Appl. Phys. Lett., 95, (25), 251107.10.1063/1.3276544Search in Google Scholar

Dengfeng, T., Yan, L., Fengjie, Q., Hong, Y., Qihuang, G., Xianzi, D., & Xuanming, D. (2007). Reduction in feature size of two-photon polymerization using SCR500. Appl. Phys. Lett., 90 (7), 071106.Search in Google Scholar

Maruo, S., Takaura, A., & Saito, Y. (2009). Optically driven micropump with a twin spiral. Microrotor. Opt. Express, 17 (21), 18525-18532.10.1364/OE.17.01852520372583Search in Google Scholar

Wu, D., Chen, Q., Niu, L., Wang, J., Wang, J., Wang, R., Xia, H., & Sun, H. (2009). Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab. Chip., (9), 2391-2394.10.1039/b902159k19636471Search in Google Scholar

Sun, Q., Juodkazis, S., Murazawa, N., Mizeikis, V., & Misawa, H. (2010). Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses. J. Micromech. Microeng., 20 (3), 035004.10.1088/0960-1317/20/3/035004Search in Google Scholar

Malinauskas, M., Gilbergs, H., Žukauskas, A., Purlys, V., Paipulas, D., & Gadonas, R., (2010). A femtosecond laser induced two-photon photopolymerization technique for structuring microlenses. J. Opt., 12 (3), 035204.10.1088/2040-8978/12/3/035204Search in Google Scholar

Ovsianikov, A., Schlie, S., Ngezahayo, A., Haverich, A., & Chichkov, B. N. (2008). Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. J. Tissue. Eng. Regen. Med., 1 (6), 443-449.Search in Google Scholar

Griffith, L.G., & Naughton, G. (2002). Expanding opportunities in tissue engineering - current challenges. Science, 295 (5557).10.1126/science.1069210Search in Google Scholar

Malinauskas, M., Danilevičius, P., Baltriukienė, D., Rutkauskas, M., Žukauskas, A., Kairytė, Ž., Bičkauskaitė, G., Purlys, V., Paipulas, D., Bukelskienė, V., & Gadonas, R. (2010). 3D artificial polymeric scaffolds for stem cell growth fabricated by femtosecond laser. Lithuanian J. Phys., 50 (1), 75-82.10.3952/lithjphys.50121Search in Google Scholar

Hutmacher, D.W. (2000). Scaffolds in tissue engineering of bone and cartilage. Biomaterials, 21(24), 2529-2543.10.1016/S0142-9612(00)00121-6Search in Google Scholar

Lutolf, M.P., & Hubbell, J.A. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol., 23, 47-55.10.1038/nbt1055Search in Google Scholar

Li, Y., Yang, S. (2001). Effects of three-dimensional scaffolds on cell organization and tissue development. Biotechnol. Bioprocess Eng., 6 (5), 311-325.10.1007/BF02932999Search in Google Scholar

Braukel, J.H., Brendel, Z.E., Martinson, L.A., Crudele, J., Johnston, W.D., & Johnson, R.C. (1995). Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res., 29 (12) 1517-1524.Search in Google Scholar

Nehrer, S., Breinan, H.A., Ramappa, A., Young, G., Shortkroff, S., Louie, L.K, Sledge, C.B., Yannas, I.V. & Spector, M. (1997). Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials, 18 (11), 769-776.10.1016/S0142-9612(97)00001-XSearch in Google Scholar

Whang, K., Thomas, C.H., & Healy, K.E. (1995). A novel method to fabricate bioabsorbable scaffolds. Polymer, 36, 837-842.10.1016/0032-3861(95)93115-3Search in Google Scholar

Wake, M.C., Patrick, C.W., & Mikos, A.G. (1994). Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplantation, (3), 339-343.10.1177/0963689794003004117522866Search in Google Scholar

Yannas, I., Lee, Z.E., Orgil, O.E., Krabut, E.M., & Murphy, E. (1989). Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl. Acad. Sci. (USA), 86, 933-937.10.1073/pnas.86.3.9332865932915988Search in Google Scholar

Patrick, C.W., Chauvin, E.B., Hobley, J. & Reece, G.P. (1999). Preaclipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng., 5 (2), 139-151.10.1089/ten.1999.5.13910358221Search in Google Scholar

Boyan, B.D., Humnert, Z., Dean, D.D., & Schwartz, Z. (1996). Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 17 (2), 137-146.10.1016/0142-9612(96)85758-9Search in Google Scholar

Ma, P.X., (2004). Scaffolds for tissue fabrication. Mater. Today, 7 (5), 38-40.10.1016/S1369-7021(04)00233-0Search in Google Scholar

Tayalia, P., Mendonca, C. R., Baldacchini, T., Mooney, D.J., Mazur, E. (2008). 3D cell-migration studies using two-photon engineered polymer scaffolds. Adv. Mater., 20 (23), 4494-4498.10.1002/adma.200801319Search in Google Scholar

Claeyssens, F., Hasan, E.A., Gaidukevičiūtė, A., Achilleos, D.S., Ranella, A., Reinhardt, C., Ovsianikov, A., Shizhou, X., Fotakis, C., Vamvakaki, M., Chichkov, B.N., & Farsari, M. (2009). Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir, 25 (5), 3219-3223.10.1021/la803803m19437724Search in Google Scholar

Malinauskas, M., Purlys, V., Rutkauskas, M., & Gadonas, R. (2009). Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area. SPIE Proc., 7204, 72040C.10.1117/12.811125Search in Google Scholar

Gittard, S.D., Narayan, R.J., Lusk, J., Morel, P., Stockmans, F., Ramsey, M., Laverde, C., Phillips, J, Monteiro-Riviere N.A, Ovsianikov, A. & Chichkov B.N. (2009). Rapid prototyping of scaphoid and lunate bones. Biotechnol. J., 4 (1), 129-134.10.1002/biot.20080023319156737Search in Google Scholar

Stampfl, J., Baudis, S., Heller, C., Liska, R., Neumeister, A., Kling, R., Ostendorf, A., & Spitzbart, M. (2008). Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. J. Micromech. Microeng., 18 (12), 125014.10.1088/0960-1317/18/12/125014Search in Google Scholar

Cumming, D.R.S, Thoms, S., Beaumont, S.P., & Weaver J.M.R. (1996). Fabrication of 3 nm wires using 100 keV electron beamlithography and poly(methyl methacrylate) resist, Appl. Phys. Lett., 68 (3), 322-324.Search in Google Scholar

Chen, W., & Ahmed, H. (1993). Fabrication of 5-7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist. Appl. Phys. Lett., 62 (13), 1499-1501.10.1063/1.109609Search in Google Scholar

Schizas, C., Melissinaki, V., Gaidukevičiūte A., Reinhardt, C., Ohrt, C., Dedoussis, V., Chichkov, B.N., Fotakis, C., Farsari, M., & Karalekas, D. (2009). On the design and fabrication by two-photon polymerization of a readily assembled micro-valve. Int. J. Adv. Manuf. Technol., 48 (5-8), 435-441.Search in Google Scholar

Passinger, S., Ovsianikov, A., Kiyan, R., Reinhardt, C., Ostendorf, A., & Chichkov, B.N. (2008). Two-photon polymerization for industrial applications. Proc LPM 2008.Search in Google Scholar

Malinauskas, M., Purlys, V., Rutkauskas, M., Gaidukevičūtė, A., & Gadonas R. (2010). Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers. Lithuanian J. Phys., 50 (2), 201-207.10.3952/lithjphys.50203Search in Google Scholar

Weiß, T., Hildebrand, G., Schade, R., & Liefeith, K. (2009). Two-photon polymerization for microfabrication of three-dimensional scaffolds for tissue engineering application. Eng. Life Sci., 9 (5), 384-390.10.1007/978-3-642-03900-3_41Search in Google Scholar

Ovsianikov, A., Viertl, J., Chichkov, B.N, Oubaha, M., MacCraith, B., Sakellari, I., Giakoumaki, A., Gray, D., Vamvakaki, M., Farsari, M., & Fotakis, C. (2008). Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano, 2 (11), 2257-2262.10.1021/nn800451wSearch in Google Scholar

Ovsianikov, A., Gaidukevičiūtė, A., Chichkov, B.N, Oubaha, M. MacCraith, B.D, Sakellari, I., Giakoumaki, A., Gray, D., Vamvakaki, M., Farsari, M., & Fotakis C. (2008). Two-photon polymerization of hybrid sol-gel materials for photonics applications. Laser Chem., 493059.10.1155/2008/493059Search in Google Scholar

Ovsianikov, A., Ostendorf, A., & Chichkov, B.N. (2007). Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine. Appl. Surf. Sci., 253 (15), 6599-6602.10.1016/j.apsusc.2007.01.058Search in Google Scholar

Ovsianikov, A., Malinauskas, M., Schlie, S., Chichkov, B., Gittard, S., Narayan, R., Löbler, M., Sternberg, K., Schmitz, K.-P., Haverich, A. (2011). Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater., 7, 967-974.10.1016/j.actbio.2010.10.023Search in Google Scholar

Inoue, S., & Oldenbourg, R. (1995). Handbook of optics: devices, measurements and properties, Vol. 2, ed. M. Bass (McGraw. Hill), 566-568.Search in Google Scholar

Liu, Y, Pyrak-Nolte, L., & Nolte, D. (2008). General 3D microporous structures fabricated with two-photon lasermachining. SPIE Proc., 6886, 68860Y.Search in Google Scholar

Chachques, J.C., Trainini, J.C., Lago, N., Cortes-Morichetti, M., Schussler, O., & Carpentier, A. (2008). Myocardial assistance by grafting a new bioartificial upgraded myocardium magnum trial: Clinical feasibility study. Ann. Thorac. Surg., 85, 901-908.10.1016/j.athoracsur.2007.10.052Search in Google Scholar

Weng, J., & Wang, M. (2001). Producing chitin scaffolds with controlled pore size and interconnectivity for tissue engineering. J. Mater. Sci. Lett., 20, 1401-1403.10.1023/A:1011643511015Search in Google Scholar

Hollister, S.J, Maddox, R.D., & Taboas, J.M. (2002). Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomater., 23 (20), 4095-4103.10.1016/S0142-9612(02)00148-5Search in Google Scholar

Bukelskienė, V., Baltriukienė, D., Bironaitė, D., Imbrasaitė, A., Širmenis, R., Balčiūnas, M., Žurauskas, E., & Kalvelytė, A. (2005). Muscle derived primary stem cell lines for heart repair. Sem. Cargiol., 11 (3), 99-105.Search in Google Scholar

Širmenis, R., Bukelskienė, V., Domkus, V., & Sirvydis, V. (1999). Cellular cardiomyoplasty: isolation and cultivation of skeletal musclesatellite cells. Acta Med. Lituanica, (6), 178-181.Search in Google Scholar

Paital, S.R., Cao, Z., He, W., & Dahotre, N.B. (2010). Wetting effects on in vitro bioactivity and in vitro biocompatibility of laser micro-textured Ca-P coating. Biofabrication, (2), 025001.10.1088/1758-5082/2/2/02500120811129Search in Google Scholar

Zhang, D., Chen, F., Fang, G., Yang, Q., Xie, D., Qiao, G., Li, W., Si, J., & Hou, X. (2010). Wetting characteristics on hierarchical structures patterned by a femtosecond laser. J. Micromech. Microeng., (20), 075029.10.1088/0960-1317/20/7/075029Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo