1. bookVolumen 132 (2022): Edición 1 (January 2022)
Detalles de la revista
Primera edición
23 Apr 2014
Calendario de la edición
1 tiempo por año
Acceso abierto

The role of the OPRM1 gene polymorphism and its methylation in people in dependence on substances and with different intensity of pain

Publicado en línea: 17 Oct 2022
Volumen & Edición: Volumen 132 (2022) - Edición 1 (January 2022)
Páginas: 25 - 30
Detalles de la revista
Primera edición
23 Apr 2014
Calendario de la edición
1 tiempo por año

1. Toubia T, Khalife T. The endogenous opioid system: Role and dysfunction caused by opioid therapy. Clin Obstet Gynecol. 2019;62(1):3-10.10.1097/GRF.000000000000040930398979 Search in Google Scholar

2. Dhaliwal A, Gupta M. Physiology, opioid receptor. Treasure Island: Stat Pearls Publishing; 2022. Search in Google Scholar

3. Clark MJ, Furman CA, Gilson TD, Traynor JR. Comparison of the relative efficacy and potency of mu-opioid agonists to activate Galpha(i/o) proteins containing a pertussis toxin-insensitive mutation. J Pharmacol Exp Ther. 2006;317(2):858-64.10.1124/jpet.105.09681816436499 Search in Google Scholar

4. Traynor J. μ-Opioid receptors and regulators of G protein signaling (RGS) proteins: from a symposium on new concepts in mu-opioid pharmacology. Drug Alcohol Depend. 2012;121(3):173-80.10.1016/j.drugalcdep.2011.10.027328879822129844 Search in Google Scholar

5. Welsby PJ, Kellett E, Wilkinson G, Milligan G. Enhanced detection of receptor constitutive activity in the presence of regulators of G protein signaling: applications to the detection and analysis of inverse agonists and low-efficacy partial agonists. Mol Pharmacol. 2002;61(5):1211-21.10.1124/mol.61.5.121111961140 Search in Google Scholar

6. Melief EJ, Miyatake M, Carroll FI, et al. Duration of action of a broad range of selective κ-opioid receptor antagonists is positively correlated with c-Jun N-terminal kinase-1 activation. Mol Pharmacol. 2011;80(5):920-9.10.1124/mol.111.074195319891221832171 Search in Google Scholar

7. Melief EJ, Miyatake M, Bruchas MR, Chavkin C. Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling. PNAS. 2010;107(25):11608-13.10.1073/pnas.1000751107289505520534436 Search in Google Scholar

8. Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology. 2011;115(6):1363-81.10.1097/ALN.0b013e318238bba6369885922020140 Search in Google Scholar

9. Miess E, Gondin AB, Yousuf A, et al. Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Sci Signal. 2018;11(539).10.1126/scisignal.aas960930018083 Search in Google Scholar

10. Cuitavi J, Hipólito L, Canals M. The life cycle of the mu-opioid receptor. Trends Bioch Sci. 2021;46(4):315-28.10.1016/j.tibs.2020.10.00233127216 Search in Google Scholar

11. Just S, Illing S, Trester-Zedlitz M, et al. Differentiation of opioid drug effects by hierarchical multi-site phosphorylation. Mol Pharmacol. 2013;83(3):633-9.10.1124/mol.112.082875358349423239825 Search in Google Scholar

12. Lemos Duarte M, Devi LA. Post-translational modifications of opioid receptors. Trends Neurosci. 2020;43(6):417-32.10.1016/j.tins.2020.03.011732305432459993 Search in Google Scholar

13. Williams JT, Ingram SL, Henderson G, et al. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev. 2013;65(1):223-54.10.1124/pr.112.005942356591623321159 Search in Google Scholar

14. Tanowitz M, von Zastrow M. A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors. J Biol Chem. 2003;278(46):45978-86.10.1074/jbc.M30450420012939277 Search in Google Scholar

15. Siuda ER, Carr R 3rd, Rominger DH, Violin JD. Biased mu-opioid receptor ligands: a promising new generation of pain therapeutics. Curr Opin Pharmacol. 2017;32:77-84.10.1016/j.coph.2016.11.00727936408 Search in Google Scholar

16. Piltonen M, Parisien M, Grégoire S, et al. Alternative splicing of the delta-opioid receptor gene suggests existence of new functional isoforms. Mol Neurobiol. 2019;56(4):2855-69.10.1007/s12035-018-1253-z30066306 Search in Google Scholar

17. Boparai S, Borelli JL, Partington L, et al. Interaction between the opioid receptor OPRM1 gene and mother-child language style matching prospectively predicts children’s separation anxiety disorder ymptoms. Res Dev Disabil. 2018;82:120-31.10.1016/j.ridd.2018.03.00229576267 Search in Google Scholar

18. Mura E, Govoni S, Racchi M, et al. Consequences of the 118A>G polymorphism in the OPRM1 gene: translation from bench to bedside? J Pain Res. 2013;6:331-53. Search in Google Scholar

19. Huang P, Chen C, Mague SD, et al. A common single nucleotide polymorphism A118G of the μ opioid receptor alters its N-glycosylation and protein stability. Biochem J. 2012;441(1):379-86.10.1042/BJ20111050392351621864297 Search in Google Scholar

20. Oertel BG, Doehring A, Roskam B, et al. Genetic-epigenetic interaction modulates μ-opioid receptor regulation. Hum Mol Gen. 2012;21(21):4751-60.10.1093/hmg/dds31422875838 Search in Google Scholar

21. Darcq E, Kieffer BL. Opioid receptors: drivers to addiction? Nat Rev Neurosci. 2018;19(8):499-514.10.1038/s41583-018-0028-x29934561 Search in Google Scholar

22. Yu L. The mu opioid receptor: from molecular cloning to functional studies. Addict Biol. 1996;1(1):19-30.10.1080/135562196100012466612893484 Search in Google Scholar

23. Kranzler HR, Edenberg HJ. Pharmacogenetics of alcohol and alcohol dependence treatment. Curr Pharm Des. 2010;16(19):2141-8.10.2174/138161210791516387414270120482509 Search in Google Scholar

24. Spanagel R, Herz A, Shippenberg TS. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. PNAS USA. 1992;89(6):2046-50.10.1073/pnas.89.6.2046485931347943 Search in Google Scholar

25. Matthes HW, Maldonado R, Simonin F, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature. 1996;383(6603):819-23.10.1038/383819a08893006 Search in Google Scholar

26. Sora I, Takahashi N, Funada M, et al. Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. PNAS USA. 1997;94(4):1544-9.10.1073/pnas.94.4.1544198289037090 Search in Google Scholar

27. Gianoulakis C. Endogenous opioids and addiction to alcohol and other drugs of abuse. Curr Top Med Chem. 2009;9(11):999-1015.10.2174/15680260978963095619747123 Search in Google Scholar

28. ben Hamida S, Boulos LJ, McNicholas M, et al. Mu opioid receptors in GABAergic neurons of the forebrain promote alcohol reward and drinking. Addict Biol. 2019;24(1):28-39.10.1111/adb.12576593227229094432 Search in Google Scholar

29. Pieters S, van der Zwaluw CS, van der Vorst H, et al. The moderating effect of alcohol-specific parental rule-setting on the relation between the dopamine D2 receptor gene (DRD2), the μ-opioid receptor gene (OPRM1) and alcohol use in young adolescents. Alcohol Alcohol. 2012;47(6):663-70.10.1093/alcalc/ags07522798433 Search in Google Scholar

30. Pfeifer P, Sariyar M, Eggermann T, et al. Alcohol consumption in healthy OPRM1 G allele carriers and its association with impulsive behavior. Alcohol Alcohol. 2015;50(4):379-84.10.1093/alcalc/agv01925836994 Search in Google Scholar

31. Sloan ME, Klepp TD, Gowin JL, et al. The OPRM1 A118G polymorphism: converging evidence against associations with alcohol sensitivity and consumption. Neuropsychopharmacol. 2018;43(7):1530-8.10.1038/s41386-017-0002-8598353529497164 Search in Google Scholar

32. Chung P, Logge WB, Riordan BC, et al. Genetic polymorphisms on OPRM1, DRD2, DRD4, and COMT in young adults: Lack of association with alcohol consumption. Front Psychiatry. 2020;11:549429.10.3389/fpsyt.2020.549429775045333364985 Search in Google Scholar

33. Bieńkowski P. Pharmacological features of naltrexone and its use in the treatment of alcohol dependence. Psychiatr Pol. 2013;47(1):117-26. Search in Google Scholar

34. Samochowiec A, Samochowiec J, Pełka-Wysiecka J, et al. The role of OPRM1 polymorphism in the etiology of alcoholism. Adv Clin Exp Med. 2019;28(2):199-202.10.17219/acem/7859230085428 Search in Google Scholar

35. Benjamin D, Grant ER, Pohorecky LA. Naltrexone reverses ethanol-induced dopamine release in the nucleus accumbens in awake, freely moving rats. Brain Res. 1993;621(1):137-40.10.1016/0006-8993(93)90309-B Search in Google Scholar

36. Gonzales RA, Weiss F. Suppression of ethanol-reinforced behavior by naltrexone is associated with attenuation of the ethanol-induced increase in dialysate dopamine levels in the nucleus accumbens. J Neurosci. 1998;18(24):10663-71.10.1523/JNEUROSCI.18-24-10663.199867933379852601 Search in Google Scholar

37. Anton RF. Naltrexone for the management of alcohol dependence. NEJM. 2008;359(7):715-21.10.1056/NEJMct0801733256560218703474 Search in Google Scholar

38. Middaugh LD, Szumlinski KK, van Patten Y, et al. Chronic ethanol consumption by C57BL/6 mice promotes tolerance to its interoceptive cues and increases extracellular dopamine, an effect blocked by naltrexone. Alcohol Clin Exp Res. 2003;27(12):1892-900.10.1097/01.ALC.0000099264.36220.4814691376 Search in Google Scholar

39. Bouza C, Angeles M, Muñoz A, Amate JM. Efficacy and safety of naltrexone and acamprosate in the treatment of alcohol dependence: a systematic review. Addict. 2004;99(7):811-28.10.1111/j.1360-0443.2004.00763.x15200577 Search in Google Scholar

40. Monterosso JR, Flannery BA, Pettinati HM, et al. Predicting treatment response to naltrexone: the influence of craving and family history. Am J Addict. 2001;10(3):258-68.10.1080/10550490175053214811579624 Search in Google Scholar

41. Rubio G, Ponce G, Rodriguez-Jiménez R, et al. Clinical predictors of response to naltrexone in alcoholic patients: who benefits most from treatment with naltrexone? Alcohol Alcohol. 2005;40(3):227-33.10.1093/alcalc/agh15115797885 Search in Google Scholar

42. Krishnan-Sarin S, Krystal JH, Shi J, et al. Family history of alcoholism influences naltrexone-induced reduction in alcohol drinking. Biol Psychiatry. 2007;62(6):694-7.10.1016/j.biopsych.2006.11.01817336941 Search in Google Scholar

43. Schacht JP, Randall PK, Latham PK, et al. Predictors of naltrexone response in a randomized trial: Reward-related brain activation, OPRM1 genotype, and smoking status. ACNP. 2017;42(13):2640-53. Search in Google Scholar

44. Ziauddeen H, Nestor LJ, Subramaniam N, et al. Opioid antagonists and the A118G polymorphism in the μ-opioid receptor gene: Effects of GSK1521498 and naltrexone in healthy drinkers stratified by OPRM1 genotype. ACNP. 2016;41(11):2647-57.10.1038/npp.2016.60502673127109624 Search in Google Scholar

45. Anton RF, Voronin KE, Book SW, et al. Opioid and dopamine genes interact to predict naltrexone response in a randomized alcohol use disorder clinical trial. Alcoh Clin Exp Res. 2020;44(10):2084-96.10.1111/acer.14431808043132772383 Search in Google Scholar

46. Stewart SH, Walitzer KS, Blanco J, et al. Medication-enhanced behavior therapy for alcohol use disorder: Naltrexone, alcoholics anonymous facilitation, and OPRM1 genetic variation. J Subst Abuse Treat. 2019;104:7-14.10.1016/j.jsat.2019.05.004668432931370987 Search in Google Scholar

47. Fields H. State-dependent opioid control of pain. Nat Rev Neurosci. 2004;5(7):565-75.10.1038/nrn143115208698 Search in Google Scholar

48. Crist RC, Berrettini WH. Pharmacogenetics of OPRM1. Pharmacol Biochem Behav. 2014;123:25-33.10.1016/j.pbb.2013.10.018401056724201053 Search in Google Scholar

49. Palada V, Kaunisto MA, Kalso E. Genetics and genomics in postoperative pain and analgesia. Curr Opin Anaesthesiol. 2018;31(5):569-74.10.1097/ACO.000000000000063329994939 Search in Google Scholar

50. Khalil H, Sereika SM, Dai F, et al. OPRM1 and COMT gene-gene interaction is associated with postoperative pain and opioid consumption after orthopedic trauma. Biol Res Nurs. 2017;19(2):170-9.10.1177/1099800416680474594248627903758 Search in Google Scholar

51. Olesen AE, Nielsen LM, Feddersen S, et al. Association between genetic polymorphisms and pain sensitivity in patients with hip osteoarthritis. Pain Pract. 2018;18(5):587-96.10.1111/papr.1264829055075 Search in Google Scholar

52. Matic M, de Hoogd S, de Wildt SN, et al. OPRM1 and COMT polymorphisms: implications on postoperative acute, chronic and experimental pain after cardiac surgery. Pharmacogenomics. 2020;21(3):181-93.10.2217/pgs-2019-014131967515 Search in Google Scholar

53. Wang L, Wei C, Xiao F, et al. Influences of COMT rs4680 and OPRM1 rs1799971 polymorphisms on chronic postsurgical pain, acute pain, and analgesic consumption after elective cesarean delivery. Clin J Pain. 2019;35(1):31-6.10.1097/AJP.000000000000065430234521 Search in Google Scholar

54. Karataş E, Kahraman ÇY, Akbıyık N. Association between polymorphisms in catechol-O-methyl transferase, opioid receptor Mu 1 and serotonin receptor genes with postoperative pain following root canal treatment. Int Endod J. 2021;54(7):1016-25.10.1111/iej.1349333559241 Search in Google Scholar

55. Lie MU, Winsvold B, Gjerstad J, et al. The association between selected genetic variants and individual differences in experimental pain. S J Pain. 2021;21(1):163-73.10.1515/sjpain-2020-009133108341 Search in Google Scholar

56. Leźnicka K, Kurzawski M, Cięszczyk P, et al. Polymorphisms of catechol-O-methyltransferase (COMT rs4680:G>A) and μ-opioid receptor (OPRM1 rs1799971:A>G) in relation to pain perception in combat athletes. Biology of Sport. 2017;34(3):295-301.10.5114/biolsport.2017.67856 Search in Google Scholar

57. Wang GJ, Chang L, Volkow ND, et al. Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain J Neurology. 2004;127(Pt 11):2452-8.10.1093/brain/awh26915319273 Search in Google Scholar

58. Grzywacz A, Chmielowiec K, Boroń A, et al. Influence of DAT1 promotor methylation on sports performance. Genes. 2021;12(9):1425.10.3390/genes12091425846491934573407 Search in Google Scholar

59. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Develop. 2011;25(10):1010-22.10.1101/gad.2037511309311621576262 Search in Google Scholar

60. Hwang CK, Song KY, Kim CS, et al. Evidence of endogenous mu opioid receptor regulation by epigenetic control of the promoters. Mol Cell Biol. 2007;27(13):4720-36.10.1128/MCB.00073-07195147417452465 Search in Google Scholar

61. Hwang CK, Song KY, Kim CS, et al. Epigenetic programming of muopioid receptor gene in mouse brain is regulated by MeCP2 and Brg1 chromatin remodelling factor. J Cell Mol Med. 2009;13(9B):3591-615.10.1111/j.1582-4934.2008.00535.x451651019602036 Search in Google Scholar

62. Wei LN, Loh HH. Transcriptional and epigenetic regulation of opioid receptor genes: present and future. Ann Rev Pharmacol Toxicol. 2011;51:75-97.10.1146/annurev-pharmtox-010510-100605368112420868272 Search in Google Scholar

63. Lin YC, Flock KE, Cook RJ, Hunkele AJ, Loh HH, Ko JL. Effects of trichostatin A on neuronal mu-opioid receptor gene expression. Brain Res. 2008;1246:1-10.10.1016/j.brainres.2008.09.083263971118950606 Search in Google Scholar

64. Sun N, Yu L, Gao Y, et al. MeCP2 epigenetic silencing of Oprm1 gene in primary sensory neurons under neuropathic pain conditions. Front Neurosci. 2021;15:743207.10.3389/fnins.2021.743207860269634803588 Search in Google Scholar

65. Chidambaran V, Zhang X, Martin LJ, et al. DNA methylation at the mu-1 opioid receptor gene (OPRM1) promoter predicts preoperative, acute, and chronic postsurgical pain after spine fusion. Pharmacogenomics Pers Med. 2017;10:157-68.10.2147/PGPM.S132691543211528533693 Search in Google Scholar

66. Sun Y, Sahbaie P, Liang D, et al. DNA methylation modulates nociceptive sensitization after incision. PloS one. 2015;10(11):e0142046.10.1371/journal.pone.0142046463317826535894 Search in Google Scholar

67. Sandoval-Sierra JV, Salgado García FI, Brooks JH, et al. Effect of short-term prescription opioids on DNA methylation of the OPRM1 promoter. Clin Epigenetics. 2020;12(1):76.10.1186/s13148-020-00868-8726824432493461 Search in Google Scholar

68. Ebrahimi G, Asadikaram G, Akbari H, et al. Elevated levels of DNA methylation at the OPRM1 promoter region in men with opioid use disorder. Am J Drug Alcohol Abuse. 2018;44(2):193-9.10.1080/00952990.2016.127565928121474 Search in Google Scholar

69. Viet CT, Dang D, Aouizerat BE, et al. OPRM1 methylation contributes to opioid tolerance in cancer patients. J Pain. 2017;18(9):1046-59.10.1016/j.jpain.2017.04.001591841328456745 Search in Google Scholar

70. Zhang H, Herman AI, Kranzler HR, et al. Hypermethylation of OPRM1 promoter region in European Americans with alcohol dependence. J Hum Gen. 2012;57(10):670-5.10.1038/jhg.2012.98348101522914673 Search in Google Scholar

71. Lin Y, Kranzler HR, Farrer LA, et al. An analysis of the effect of muopioid receptor gene (OPRM1) promoter region DNA methylation on the response of naltrexone treatment of alcohol dependence. Pharmacogn J. 2020;20(5):672-80.10.1038/s41397-020-0158-1741548332029903 Search in Google Scholar

72. Wachman EM, Hayes MJ, Lester BM, et al. Epigenetic variation in the mu-opioid receptor gene in infants with neonatal abstinence syndrome. J Pediatr. 2014;165(3):472-8.10.1016/j.jpeds.2014.05.040414503624996986 Search in Google Scholar

73. Wachman EM, Hayes MJ, Shrestha H, et al. Epigenetic variation in OPRM1 gene in opioid-exposed mother-infant dyads. Genes Brain Behav. 2018;17(7):e12476.10.1111/gbb.1247629575474 Search in Google Scholar

74. Wachman EM, Wang A, Isley BC, et al. Placental OPRM1 DNA methylation and associations with neonatal opioid withdrawal syndrome, a pilot study. Explor Med. 2020;1(3):124-35.10.37349/emed.2020.00009798572733763662 Search in Google Scholar

Artículos recomendados de Trend MD