[
1. Toubia T, Khalife T. The endogenous opioid system: Role and dysfunction caused by opioid therapy. Clin Obstet Gynecol. 2019;62(1):3-10.10.1097/GRF.000000000000040930398979
]Search in Google Scholar
[
2. Dhaliwal A, Gupta M. Physiology, opioid receptor. Treasure Island: Stat Pearls Publishing; 2022.
]Search in Google Scholar
[
3. Clark MJ, Furman CA, Gilson TD, Traynor JR. Comparison of the relative efficacy and potency of mu-opioid agonists to activate Galpha(i/o) proteins containing a pertussis toxin-insensitive mutation. J Pharmacol Exp Ther. 2006;317(2):858-64.10.1124/jpet.105.09681816436499
]Search in Google Scholar
[
4. Traynor J. μ-Opioid receptors and regulators of G protein signaling (RGS) proteins: from a symposium on new concepts in mu-opioid pharmacology. Drug Alcohol Depend. 2012;121(3):173-80.10.1016/j.drugalcdep.2011.10.027328879822129844
]Search in Google Scholar
[
5. Welsby PJ, Kellett E, Wilkinson G, Milligan G. Enhanced detection of receptor constitutive activity in the presence of regulators of G protein signaling: applications to the detection and analysis of inverse agonists and low-efficacy partial agonists. Mol Pharmacol. 2002;61(5):1211-21.10.1124/mol.61.5.121111961140
]Search in Google Scholar
[
6. Melief EJ, Miyatake M, Carroll FI, et al. Duration of action of a broad range of selective κ-opioid receptor antagonists is positively correlated with c-Jun N-terminal kinase-1 activation. Mol Pharmacol. 2011;80(5):920-9.10.1124/mol.111.074195319891221832171
]Search in Google Scholar
[
7. Melief EJ, Miyatake M, Bruchas MR, Chavkin C. Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling. PNAS. 2010;107(25):11608-13.10.1073/pnas.1000751107289505520534436
]Search in Google Scholar
[
8. Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology. 2011;115(6):1363-81.10.1097/ALN.0b013e318238bba6369885922020140
]Search in Google Scholar
[
9. Miess E, Gondin AB, Yousuf A, et al. Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Sci Signal. 2018;11(539).10.1126/scisignal.aas960930018083
]Search in Google Scholar
[
10. Cuitavi J, Hipólito L, Canals M. The life cycle of the mu-opioid receptor. Trends Bioch Sci. 2021;46(4):315-28.10.1016/j.tibs.2020.10.00233127216
]Search in Google Scholar
[
11. Just S, Illing S, Trester-Zedlitz M, et al. Differentiation of opioid drug effects by hierarchical multi-site phosphorylation. Mol Pharmacol. 2013;83(3):633-9.10.1124/mol.112.082875358349423239825
]Search in Google Scholar
[
12. Lemos Duarte M, Devi LA. Post-translational modifications of opioid receptors. Trends Neurosci. 2020;43(6):417-32.10.1016/j.tins.2020.03.011732305432459993
]Search in Google Scholar
[
13. Williams JT, Ingram SL, Henderson G, et al. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev. 2013;65(1):223-54.10.1124/pr.112.005942356591623321159
]Search in Google Scholar
[
14. Tanowitz M, von Zastrow M. A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors. J Biol Chem. 2003;278(46):45978-86.10.1074/jbc.M30450420012939277
]Search in Google Scholar
[
15. Siuda ER, Carr R 3rd, Rominger DH, Violin JD. Biased mu-opioid receptor ligands: a promising new generation of pain therapeutics. Curr Opin Pharmacol. 2017;32:77-84.10.1016/j.coph.2016.11.00727936408
]Search in Google Scholar
[
16. Piltonen M, Parisien M, Grégoire S, et al. Alternative splicing of the delta-opioid receptor gene suggests existence of new functional isoforms. Mol Neurobiol. 2019;56(4):2855-69.10.1007/s12035-018-1253-z30066306
]Search in Google Scholar
[
17. Boparai S, Borelli JL, Partington L, et al. Interaction between the opioid receptor OPRM1 gene and mother-child language style matching prospectively predicts children’s separation anxiety disorder ymptoms. Res Dev Disabil. 2018;82:120-31.10.1016/j.ridd.2018.03.00229576267
]Search in Google Scholar
[
18. Mura E, Govoni S, Racchi M, et al. Consequences of the 118A>G polymorphism in the OPRM1 gene: translation from bench to bedside? J Pain Res. 2013;6:331-53.
]Search in Google Scholar
[
19. Huang P, Chen C, Mague SD, et al. A common single nucleotide polymorphism A118G of the μ opioid receptor alters its N-glycosylation and protein stability. Biochem J. 2012;441(1):379-86.10.1042/BJ20111050392351621864297
]Search in Google Scholar
[
20. Oertel BG, Doehring A, Roskam B, et al. Genetic-epigenetic interaction modulates μ-opioid receptor regulation. Hum Mol Gen. 2012;21(21):4751-60.10.1093/hmg/dds31422875838
]Search in Google Scholar
[
21. Darcq E, Kieffer BL. Opioid receptors: drivers to addiction? Nat Rev Neurosci. 2018;19(8):499-514.10.1038/s41583-018-0028-x29934561
]Search in Google Scholar
[
22. Yu L. The mu opioid receptor: from molecular cloning to functional studies. Addict Biol. 1996;1(1):19-30.10.1080/135562196100012466612893484
]Search in Google Scholar
[
23. Kranzler HR, Edenberg HJ. Pharmacogenetics of alcohol and alcohol dependence treatment. Curr Pharm Des. 2010;16(19):2141-8.10.2174/138161210791516387414270120482509
]Search in Google Scholar
[
24. Spanagel R, Herz A, Shippenberg TS. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. PNAS USA. 1992;89(6):2046-50.10.1073/pnas.89.6.2046485931347943
]Search in Google Scholar
[
25. Matthes HW, Maldonado R, Simonin F, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature. 1996;383(6603):819-23.10.1038/383819a08893006
]Search in Google Scholar
[
26. Sora I, Takahashi N, Funada M, et al. Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. PNAS USA. 1997;94(4):1544-9.10.1073/pnas.94.4.1544198289037090
]Search in Google Scholar
[
27. Gianoulakis C. Endogenous opioids and addiction to alcohol and other drugs of abuse. Curr Top Med Chem. 2009;9(11):999-1015.10.2174/15680260978963095619747123
]Search in Google Scholar
[
28. ben Hamida S, Boulos LJ, McNicholas M, et al. Mu opioid receptors in GABAergic neurons of the forebrain promote alcohol reward and drinking. Addict Biol. 2019;24(1):28-39.10.1111/adb.12576593227229094432
]Search in Google Scholar
[
29. Pieters S, van der Zwaluw CS, van der Vorst H, et al. The moderating effect of alcohol-specific parental rule-setting on the relation between the dopamine D2 receptor gene (DRD2), the μ-opioid receptor gene (OPRM1) and alcohol use in young adolescents. Alcohol Alcohol. 2012;47(6):663-70.10.1093/alcalc/ags07522798433
]Search in Google Scholar
[
30. Pfeifer P, Sariyar M, Eggermann T, et al. Alcohol consumption in healthy OPRM1 G allele carriers and its association with impulsive behavior. Alcohol Alcohol. 2015;50(4):379-84.10.1093/alcalc/agv01925836994
]Search in Google Scholar
[
31. Sloan ME, Klepp TD, Gowin JL, et al. The OPRM1 A118G polymorphism: converging evidence against associations with alcohol sensitivity and consumption. Neuropsychopharmacol. 2018;43(7):1530-8.10.1038/s41386-017-0002-8598353529497164
]Search in Google Scholar
[
32. Chung P, Logge WB, Riordan BC, et al. Genetic polymorphisms on OPRM1, DRD2, DRD4, and COMT in young adults: Lack of association with alcohol consumption. Front Psychiatry. 2020;11:549429.10.3389/fpsyt.2020.549429775045333364985
]Search in Google Scholar
[
33. Bieńkowski P. Pharmacological features of naltrexone and its use in the treatment of alcohol dependence. Psychiatr Pol. 2013;47(1):117-26.
]Search in Google Scholar
[
34. Samochowiec A, Samochowiec J, Pełka-Wysiecka J, et al. The role of OPRM1 polymorphism in the etiology of alcoholism. Adv Clin Exp Med. 2019;28(2):199-202.10.17219/acem/7859230085428
]Search in Google Scholar
[
35. Benjamin D, Grant ER, Pohorecky LA. Naltrexone reverses ethanol-induced dopamine release in the nucleus accumbens in awake, freely moving rats. Brain Res. 1993;621(1):137-40.10.1016/0006-8993(93)90309-B
]Search in Google Scholar
[
36. Gonzales RA, Weiss F. Suppression of ethanol-reinforced behavior by naltrexone is associated with attenuation of the ethanol-induced increase in dialysate dopamine levels in the nucleus accumbens. J Neurosci. 1998;18(24):10663-71.10.1523/JNEUROSCI.18-24-10663.199867933379852601
]Search in Google Scholar
[
37. Anton RF. Naltrexone for the management of alcohol dependence. NEJM. 2008;359(7):715-21.10.1056/NEJMct0801733256560218703474
]Search in Google Scholar
[
38. Middaugh LD, Szumlinski KK, van Patten Y, et al. Chronic ethanol consumption by C57BL/6 mice promotes tolerance to its interoceptive cues and increases extracellular dopamine, an effect blocked by naltrexone. Alcohol Clin Exp Res. 2003;27(12):1892-900.10.1097/01.ALC.0000099264.36220.4814691376
]Search in Google Scholar
[
39. Bouza C, Angeles M, Muñoz A, Amate JM. Efficacy and safety of naltrexone and acamprosate in the treatment of alcohol dependence: a systematic review. Addict. 2004;99(7):811-28.10.1111/j.1360-0443.2004.00763.x15200577
]Search in Google Scholar
[
40. Monterosso JR, Flannery BA, Pettinati HM, et al. Predicting treatment response to naltrexone: the influence of craving and family history. Am J Addict. 2001;10(3):258-68.10.1080/10550490175053214811579624
]Search in Google Scholar
[
41. Rubio G, Ponce G, Rodriguez-Jiménez R, et al. Clinical predictors of response to naltrexone in alcoholic patients: who benefits most from treatment with naltrexone? Alcohol Alcohol. 2005;40(3):227-33.10.1093/alcalc/agh15115797885
]Search in Google Scholar
[
42. Krishnan-Sarin S, Krystal JH, Shi J, et al. Family history of alcoholism influences naltrexone-induced reduction in alcohol drinking. Biol Psychiatry. 2007;62(6):694-7.10.1016/j.biopsych.2006.11.01817336941
]Search in Google Scholar
[
43. Schacht JP, Randall PK, Latham PK, et al. Predictors of naltrexone response in a randomized trial: Reward-related brain activation, OPRM1 genotype, and smoking status. ACNP. 2017;42(13):2640-53.
]Search in Google Scholar
[
44. Ziauddeen H, Nestor LJ, Subramaniam N, et al. Opioid antagonists and the A118G polymorphism in the μ-opioid receptor gene: Effects of GSK1521498 and naltrexone in healthy drinkers stratified by OPRM1 genotype. ACNP. 2016;41(11):2647-57.10.1038/npp.2016.60502673127109624
]Search in Google Scholar
[
45. Anton RF, Voronin KE, Book SW, et al. Opioid and dopamine genes interact to predict naltrexone response in a randomized alcohol use disorder clinical trial. Alcoh Clin Exp Res. 2020;44(10):2084-96.10.1111/acer.14431808043132772383
]Search in Google Scholar
[
46. Stewart SH, Walitzer KS, Blanco J, et al. Medication-enhanced behavior therapy for alcohol use disorder: Naltrexone, alcoholics anonymous facilitation, and OPRM1 genetic variation. J Subst Abuse Treat. 2019;104:7-14.10.1016/j.jsat.2019.05.004668432931370987
]Search in Google Scholar
[
47. Fields H. State-dependent opioid control of pain. Nat Rev Neurosci. 2004;5(7):565-75.10.1038/nrn143115208698
]Search in Google Scholar
[
48. Crist RC, Berrettini WH. Pharmacogenetics of OPRM1. Pharmacol Biochem Behav. 2014;123:25-33.10.1016/j.pbb.2013.10.018401056724201053
]Search in Google Scholar
[
49. Palada V, Kaunisto MA, Kalso E. Genetics and genomics in postoperative pain and analgesia. Curr Opin Anaesthesiol. 2018;31(5):569-74.10.1097/ACO.000000000000063329994939
]Search in Google Scholar
[
50. Khalil H, Sereika SM, Dai F, et al. OPRM1 and COMT gene-gene interaction is associated with postoperative pain and opioid consumption after orthopedic trauma. Biol Res Nurs. 2017;19(2):170-9.10.1177/1099800416680474594248627903758
]Search in Google Scholar
[
51. Olesen AE, Nielsen LM, Feddersen S, et al. Association between genetic polymorphisms and pain sensitivity in patients with hip osteoarthritis. Pain Pract. 2018;18(5):587-96.10.1111/papr.1264829055075
]Search in Google Scholar
[
52. Matic M, de Hoogd S, de Wildt SN, et al. OPRM1 and COMT polymorphisms: implications on postoperative acute, chronic and experimental pain after cardiac surgery. Pharmacogenomics. 2020;21(3):181-93.10.2217/pgs-2019-014131967515
]Search in Google Scholar
[
53. Wang L, Wei C, Xiao F, et al. Influences of COMT rs4680 and OPRM1 rs1799971 polymorphisms on chronic postsurgical pain, acute pain, and analgesic consumption after elective cesarean delivery. Clin J Pain. 2019;35(1):31-6.10.1097/AJP.000000000000065430234521
]Search in Google Scholar
[
54. Karataş E, Kahraman ÇY, Akbıyık N. Association between polymorphisms in catechol-O-methyl transferase, opioid receptor Mu 1 and serotonin receptor genes with postoperative pain following root canal treatment. Int Endod J. 2021;54(7):1016-25.10.1111/iej.1349333559241
]Search in Google Scholar
[
55. Lie MU, Winsvold B, Gjerstad J, et al. The association between selected genetic variants and individual differences in experimental pain. S J Pain. 2021;21(1):163-73.10.1515/sjpain-2020-009133108341
]Search in Google Scholar
[
56. Leźnicka K, Kurzawski M, Cięszczyk P, et al. Polymorphisms of catechol-O-methyltransferase (COMT rs4680:G>A) and μ-opioid receptor (OPRM1 rs1799971:A>G) in relation to pain perception in combat athletes. Biology of Sport. 2017;34(3):295-301.10.5114/biolsport.2017.67856
]Search in Google Scholar
[
57. Wang GJ, Chang L, Volkow ND, et al. Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain J Neurology. 2004;127(Pt 11):2452-8.10.1093/brain/awh26915319273
]Search in Google Scholar
[
58. Grzywacz A, Chmielowiec K, Boroń A, et al. Influence of DAT1 promotor methylation on sports performance. Genes. 2021;12(9):1425.10.3390/genes12091425846491934573407
]Search in Google Scholar
[
59. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Develop. 2011;25(10):1010-22.10.1101/gad.2037511309311621576262
]Search in Google Scholar
[
60. Hwang CK, Song KY, Kim CS, et al. Evidence of endogenous mu opioid receptor regulation by epigenetic control of the promoters. Mol Cell Biol. 2007;27(13):4720-36.10.1128/MCB.00073-07195147417452465
]Search in Google Scholar
[
61. Hwang CK, Song KY, Kim CS, et al. Epigenetic programming of muopioid receptor gene in mouse brain is regulated by MeCP2 and Brg1 chromatin remodelling factor. J Cell Mol Med. 2009;13(9B):3591-615.10.1111/j.1582-4934.2008.00535.x451651019602036
]Search in Google Scholar
[
62. Wei LN, Loh HH. Transcriptional and epigenetic regulation of opioid receptor genes: present and future. Ann Rev Pharmacol Toxicol. 2011;51:75-97.10.1146/annurev-pharmtox-010510-100605368112420868272
]Search in Google Scholar
[
63. Lin YC, Flock KE, Cook RJ, Hunkele AJ, Loh HH, Ko JL. Effects of trichostatin A on neuronal mu-opioid receptor gene expression. Brain Res. 2008;1246:1-10.10.1016/j.brainres.2008.09.083263971118950606
]Search in Google Scholar
[
64. Sun N, Yu L, Gao Y, et al. MeCP2 epigenetic silencing of Oprm1 gene in primary sensory neurons under neuropathic pain conditions. Front Neurosci. 2021;15:743207.10.3389/fnins.2021.743207860269634803588
]Search in Google Scholar
[
65. Chidambaran V, Zhang X, Martin LJ, et al. DNA methylation at the mu-1 opioid receptor gene (OPRM1) promoter predicts preoperative, acute, and chronic postsurgical pain after spine fusion. Pharmacogenomics Pers Med. 2017;10:157-68.10.2147/PGPM.S132691543211528533693
]Search in Google Scholar
[
66. Sun Y, Sahbaie P, Liang D, et al. DNA methylation modulates nociceptive sensitization after incision. PloS one. 2015;10(11):e0142046.10.1371/journal.pone.0142046463317826535894
]Search in Google Scholar
[
67. Sandoval-Sierra JV, Salgado García FI, Brooks JH, et al. Effect of short-term prescription opioids on DNA methylation of the OPRM1 promoter. Clin Epigenetics. 2020;12(1):76.10.1186/s13148-020-00868-8726824432493461
]Search in Google Scholar
[
68. Ebrahimi G, Asadikaram G, Akbari H, et al. Elevated levels of DNA methylation at the OPRM1 promoter region in men with opioid use disorder. Am J Drug Alcohol Abuse. 2018;44(2):193-9.10.1080/00952990.2016.127565928121474
]Search in Google Scholar
[
69. Viet CT, Dang D, Aouizerat BE, et al. OPRM1 methylation contributes to opioid tolerance in cancer patients. J Pain. 2017;18(9):1046-59.10.1016/j.jpain.2017.04.001591841328456745
]Search in Google Scholar
[
70. Zhang H, Herman AI, Kranzler HR, et al. Hypermethylation of OPRM1 promoter region in European Americans with alcohol dependence. J Hum Gen. 2012;57(10):670-5.10.1038/jhg.2012.98348101522914673
]Search in Google Scholar
[
71. Lin Y, Kranzler HR, Farrer LA, et al. An analysis of the effect of muopioid receptor gene (OPRM1) promoter region DNA methylation on the response of naltrexone treatment of alcohol dependence. Pharmacogn J. 2020;20(5):672-80.10.1038/s41397-020-0158-1741548332029903
]Search in Google Scholar
[
72. Wachman EM, Hayes MJ, Lester BM, et al. Epigenetic variation in the mu-opioid receptor gene in infants with neonatal abstinence syndrome. J Pediatr. 2014;165(3):472-8.10.1016/j.jpeds.2014.05.040414503624996986
]Search in Google Scholar
[
73. Wachman EM, Hayes MJ, Shrestha H, et al. Epigenetic variation in OPRM1 gene in opioid-exposed mother-infant dyads. Genes Brain Behav. 2018;17(7):e12476.10.1111/gbb.1247629575474
]Search in Google Scholar
[
74. Wachman EM, Wang A, Isley BC, et al. Placental OPRM1 DNA methylation and associations with neonatal opioid withdrawal syndrome, a pilot study. Explor Med. 2020;1(3):124-35.10.37349/emed.2020.00009798572733763662
]Search in Google Scholar