1. bookVolumen 24 (2022): Edición 3 (September 2022)
Detalles de la revista
License
Formato
Revista
eISSN
1899-4741
Primera edición
03 Jul 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Innovative NPK Fertilizers based on Polyacrylamide and Polyvinyl Alcohol with Controlled Release of Nutrients

Publicado en línea: 16 Oct 2022
Volumen & Edición: Volumen 24 (2022) - Edición 3 (September 2022)
Páginas: 14 - 18
Detalles de la revista
License
Formato
Revista
eISSN
1899-4741
Primera edición
03 Jul 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

Izydorczyk, G., Sienkiewicz-Cholewa, U., Baśladyńska, S., Kocek, D., Mironiuk, M. & Chojnacka, K. (2020). New environmentally friendly bio-based micronutrient fertilizer by biosorption: From laboratory studies to the field. Sci. Total Environ. 710, 136061 DOI: 10.1016/j.scitotenv.2019.136061.31927280 Abierto DOISearch in Google Scholar

Kasprzycka, A., Lalak-Kańczugowska, J., Jerzy Tys, J., Chmielewska, M. & Pawłowska, M. (2018). Chemical stability and sanitary properties of pelletized organo-mineral waste-derived fertilizer. Search in Google Scholar

Arch. Environ. Prot. 44 (3), 106–113. DOI: 10.24425/122284. Abierto DOISearch in Google Scholar

Sądej, W., Żołnowski, A.C. & Marczuk, O. (2016). Content of phenolic compounds in soils originating from two long-term fertilization experiments. Arch. Environ. Prot. 42 (4), 104–113. DOI: 10.1515/aep-2016-0047. Abierto DOISearch in Google Scholar

Davidson, D.W., Verma, M.S. & Gu, F.X. (2013). Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springer-Plus, 2 (1), 1–9. DOI: 10.1186/2193-1801-2-318.372498723961392 Abierto DOISearch in Google Scholar

Hridya, A.C. & Byju, G. (2014). Effect of chemical fertilizers and microbial inoculations on soil properties in cassava (Manihot esculenta) growing Vertisols of Tamil Nadu. Indian J. Agr. Sci. 84 (7), 860–866. Search in Google Scholar

Kumar, D., Singh, S., Singh, J. & Singh, S.P. (2015). Influence of organic and inorganic fertilizers on soil fertility and productivity of wheat (Triticum aestivum). Indian J. Agr. Sci. 85 (2), 177–181. Search in Google Scholar

NeAmţu, C., Popescu M., Oancea F. & Dima, Ş.O. (2015). Synthesis Optimization and Characterization of Microencapsulated N-P-K Slow-Release Fertilizers. Open Chem. 13 (1), 813–823. DOI: 10.1515/chem-2015-0098. Abierto DOISearch in Google Scholar

Davidson, D. & Gu, F.X. (2012). Materials for sustained and controlled release of nutrients and molecules to support plant growth. J. Agr. Food Chem. 60, 870–876. DOI: 10.1021/jf204092h.22224363 Abierto DOISearch in Google Scholar

Guilherme, R.M., Aouada, A.F. & Fajardo, R.A. (2015). Superabsorbent hydrogels based on a polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur. Polym. J. 72, 365–385. DOI: 10.1016/j.eurpolymj.2015.04.017. Abierto DOISearch in Google Scholar

Johnson, W.R., Goertz, M.H. & Timmons, R.J. (2008). Controlled release fertilizer and method of its production, U.S. Patent No. 338558. Search in Google Scholar

Barth, T., Rieber, N., Gold, R.E., Dressei, J., Erhardt, K., Horchler von Locquengh, K., Leibold, E. & Rittinger, S. (2004). Application of inorganic or organic polyacids for application to mineral fertilizers, mineral fertilizer containing nitrogen and method of mineral fertilizer production. DE Patent No. 331409. Search in Google Scholar

Lubkowski, K. & Grzmil, B. (2007). Controlled release fertilizers. Pol. J. Chem. Technol. 9 (4), 81–84. DOI: 10.2478/v10026-007-0096-6. Abierto DOISearch in Google Scholar

Borowiec, M., Polańska, P. & Hoffmann, J. (2007). Biodegradability of the compounds introduced with microelement fertilizers into the environment. Pol. J. Chem. Technol. 9 (3), 38–41. DOI: 10.2478/v10026-007-0050-7. Abierto DOISearch in Google Scholar

Watanabe, F.S. & Olsen, S.R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. J. 29 (6), 677–678. DOI: 10.2136/sssaj1965.03615995002900060025x. Abierto DOISearch in Google Scholar

Breś,W. & Trelka T. (2015). Effect of fertigation on soil pollution during greenhouse plant cultivation. Arch. Environ. Prot. 41 (2), 75–81. DOI: 10.1515/aep-2015-0021. Abierto DOISearch in Google Scholar

Chiellini, E., Corti, A., Del Sarto, G. & D'Antone, S. (2006). Oxo-biodegradable polymers–Effect of hydrolysis degree on biodegradation behaviour of poly (vinyl alcohol). Polym. Degrad. Stab. 91 (12), 3397–3406. DOI: 10.1016/j.polymdegradstab.2006.05.021. Abierto DOISearch in Google Scholar

Nagarkar, R. & Patel, J. (2019). Polyvinyl alcohol: A comprehensive study. Acta Sci. Pharm. Sci. 3 (4), 34–44. Search in Google Scholar

Martens, P. & Anseth, K.S. (2000). Characterization of hydrogels formed from acrylate modified poly (vinyl alcohol) macromers. Polymer, 41 (21), 7715–7722. DOI: 10.1016/S0032-3861(00)00123-3. Abierto DOISearch in Google Scholar

Hassan, C. M., Trakampan, P. & Peppas, N.A. (2002). Water solubility characteristics of poly (vinyl alcohol) and gels prepared by freezing/thawing processes. In Water soluble polymers, Springer, Boston, 31–40. DOI: 10.1007/0-306-46915-4_3. Abierto DOISearch in Google Scholar

Wang, C., Song, S., Yang, Z., Liu, Y., He, Z., Zhou, C., Du, L., Sun, D. & Li, P. (2022). Hydrophobic modification of castor oil-based polyurethane coated fertilizer to improve the controlled release of nutrient with polysiloxane and halloysite. Prog. Org. Coat. 165, 106756. DOI: 10.1016/j.porgcoat.2022.106756. Abierto DOISearch in Google Scholar

Xie, J., Yang, Y., Gao, B., Wan, Y., Li, Y.C., Xu, J. & Zhao, Q. (2017). Biomimetic superhydrophobic biobased polyurethane-coated fertilizer with atmosphere “Outerwear”. ACS Appl. Mater. Inter. 9 (18), 15868–15879. DOI: 10.1021/acsami.7b02244.28440623 Abierto DOISearch in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo