[Abd El-Aziz N.G., El-Quesni F.E.M., Farahat M.M. 2007. Response of vegetative growth and some chemical constituents of Syngonium podophyllum L. to foliar application of thiamine, ascorbic acid and kinetin at Nubaria. World Journal of Agricultural Sciences 3(3): 301–305.]Search in Google Scholar
[Abdel-Monaim M.F. 2011. Role of riboflavin and thiamine in induced resistance against charcoal rot disease of soybean. African Journal of Biotechnology 10(53): 10842–10855. DOI: 10.5897/ajb11.253.10.5897/AJB11.253]Search in Google Scholar
[Al-Abbasi A.M.A.S., Abbas J.A., Al-Zurfi M.T.H. 2015. Effect of spraying thiamin and salicylic acid on growth and flowering of Zinnia elegans L. Advances in Agriculture and Botanics 7(1): 44–50.]Search in Google Scholar
[Amin M.A., Ismail M.A. 2015. Effect of indole butyric, arginine, cyanocobalamine (B12), ascorbic acid and their interactions on growth, yield and some metabolic constituents of sunflower plants. International Journal of Advanced Research in Biological Sciences 2(12): 154–162. SOI: 1.15/ijarbs-2-12-17.]Search in Google Scholar
[Bahuguna R.N., Joshi R., Shukla A., Pandey M., Kumar J. 2012. Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). Plant Physiology and Biochemistry 57: 159–167. DOI: 10.1016/j.plaphy.2012.05.003.10.1016/j.plaphy.2012.05.00322705591]Abierto DOISearch in Google Scholar
[Bakhshi D., Arakawa O. 2006. Induction of phenolic compounds biosynthesis with light irradiation in the flesh of red and yellow apples. Journal of Applied Horticulture 8(2): 101–104.10.37855/jah.2006.v08i02.23]Search in Google Scholar
[Boubakri H., Wahab M.A., Chong J., Bertsch C., Mliki A., Soustre-Gacougnolle I. 2012. Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host–defense responses, including HR like-cell death. Plant Physiology and Biochemistry 57: 120–133. DOI: 10.1016/j.plaphy.2012.05.016.10.1016/j.plaphy.2012.05.01622698755]Abierto DOISearch in Google Scholar
[El-Awadi M.E., Abd Elbaky Y.R., Dawood M.G., Shalaby M.A., Bakry B.A. 2016. Enhancement quality and quantity of lupine plant via foliar application of some vitamins under sandy soil conditions. Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(4): 1012–1024.]Search in Google Scholar
[El-Bassiouny H.M.S., Sadak M.S. 2015. Impact of foliar application of ascorbic acid and α-tocopherol on antioxidant activity and some biochemical aspects of flax cultivars under salinity stress. Acta Biológica Colombiana 20(2): 209–222. DOI: 10.15446/abc.v20n2.43868.10.15446/abc.v20n2.43868]Abierto DOISearch in Google Scholar
[Fallahi H.R., Aminifard M.H., Jorkesh A. 2018. Effects of thiamine spraying on biochemical and morphological traits of basil plants under greenhouse conditions. Journal of Horticulture and Postharvest Research 1(1): 27–36. DOI: 10.22077/jhpr.2018.1114.1001.10.22077/jhpr.2018.1114.1001]Abierto DOISearch in Google Scholar
[Farouk S., Youssef S.A., Ali A.A. 2012. Exploitation of biostimulants and vitamins as an alternative strategy to control early blight of tomato plants. Asian Journal of Plant Sciences 11(1): 36–43. DOI: 10.3923/ajps.2012.36.43.10.3923/ajps.2012.36.43]Abierto DOISearch in Google Scholar
[Goyer A. 2010. Thiamine in plants: Aspects of its metabolism and functions. Phytochemistry 71: 1615–1624. DOI: 10.1016/j.phytochem.2010.06.022.10.1016/j.phytochem.2010.06.02220655074]Abierto DOISearch in Google Scholar
[Hamada A.M., Khulaef E.M. 2000. Simulative effects of ascorbic acid, thiamin or pyridoxine on Vicia faba growth and some related metabolic activities. Pakistan Journal of Biological Sciences 3(8): 1330–1332. DOI: 10.3923/pjbs.2000.1330.1332.10.3923/pjbs.2000.1330.1332]Abierto DOISearch in Google Scholar
[Hashish K.I., Eid R.A., Kandil M.M., Mazher A.A.M. 2015. Study on various level of salinity on some morphological and chemical composition of gladiolus plants by foliar spray with glutathione and thiamine. International Journal of ChemTech Research 8(9): 334–341.]Search in Google Scholar
[Hassan F.A.S., Mahfouz S.A. 2012. Effect of 1-methylcy-clopropene (1-MCP) on the postharvest senescence of coriander leaves during storage and its relation to antioxidant enzyme activity. Scientia Horticulturae 141: 69–75. DOI: 10.1016/j.scienta.2012.04.021.10.1016/j.scienta.2012.04.021]Abierto DOISearch in Google Scholar
[Jones J.B. Jr. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, Boca Raton, USA, 384 p. DOI: 10.1201/9781420025293.10.1201/9781420025293]Abierto DOISearch in Google Scholar
[Jung I.L., Kim I.G. 2003. Thiamine protects against paraquat-induced damage: scavenging activity of re-active oxygen species. Environmental Toxicology and Pharmacology 15: 19–26. DOI: 10.1016/j.etap.2003.08.001.10.1016/j.etap.2003.08.00121782675]Abierto DOISearch in Google Scholar
[Kakani R.K., Anwer M.M. 2012. Fenugreek. In: Peter K.V. (Ed.), Handbook of herbs and spices, 2nd ed., vol. 1. Woodhead Publishing, UK, pp. 286–298. DOI: 10.1533/9780857095671.286.10.1533/9780857095671.286]Abierto DOISearch in Google Scholar
[Mady M.A. 2009. Effect of foliar application with salicylic acid and vitamin E on growth and productivity of tomato (Lycopersicon esculentum, Mill.) plant. Journal of Agricultural Sciences, Mansoura University 34(6): 6735–6746.]Search in Google Scholar
[Mandal S., DebMandal M. 2016. Fenugreek (Trigonella foenum-graecum L.) oils. In: Preedy V.R. (Eds.), Essential Oils in Food Preservation, Flavor and Safety. Elsevier, pp. 421–429. DOI: 10.1016/b978-0-12-416641-7.00047-x.10.1016/B978-0-12-416641-7.00047-X]Abierto DOISearch in Google Scholar
[Martinis J., Gas-Pascual E., Szydlowski N., Crèvecoeur M., Gisler A., Bürkle L., Fitzpatrick T.B. 2016. Long-distance transport of thiamine (vitamin B1) is concomitant with that of polyamines. Plant Physiology 171: 542–553. DOI: 10.1104/pp.16.00009.10.1104/pp.16.00009485470127006489]Abierto DOISearch in Google Scholar
[Mínguez-Mosquera M.I., Pérez-Gálvez A. 1998. Color quality in Paprika oleoresins. Journal of Agricultural and Food Chemistry 46(12): 5124–5127. DOI: 10.1021/jf980728n.10.1021/jf980728n]Abierto DOISearch in Google Scholar
[Neffati M., Marzouk B. 2008. Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Industrial Crops and Products 28: 137–142. DOI: 10.1016/j.indcrop.2008.02.005.10.1016/j.indcrop.2008.02.005]Abierto DOISearch in Google Scholar
[Ranjbar B., Sharafzadeh S., Alizadeh O. 2014. Growth and essential oil responses of German chamomile to thiamine and ascorbic acid. Bulletin of Environment, Pharmacology and Life Sciences 3(7): 51–53.]Search in Google Scholar
[Rapala-Kozik M. 2011. Vitamin B1 (thiamine): A cofactor for enzymes involved in the main metabolic pathways and an environmental stress protectant. Advances in Botanical Research 58: 37–91. DOI: 10.1016/b978-0-12-386479-6.00004-4.10.1016/b978-0-12-386479-6.00004-4]Abierto DOISearch in Google Scholar
[Rapala-Kozik M., Wolak N., Kujda M., Banas A.K. 2012. The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. Plant Biology 12(2), 14 p. DOI: 10.1186/1471-2229-12-2.10.1186/1471-2229-12-2326111522214485]Abierto DOISearch in Google Scholar
[Raschke M., Bürkle L., Müller N., Nunes-Nesi A., Fernie A.R., Arigoni D. et al. 2007. Vitamin B1 biosynthesis in plants requires the essential iron–sulfur cluster protein, THIC. Proceedings of the National Academy of Sciences of the United States of America 104: 19637–19642. DOI: 10.1073/pnas.0709597104.10.1073/pnas.0709597104214834118048325]Abierto DOISearch in Google Scholar
[Reda F., Abdel-Rahim E.A., El-Baroty G.S.A., Ayad H.S. 2005. Response of essential oils, phenolic components and polyphenol oxidase activity of thyme (Thymus vulgaris, L.) to some bioregulators and vitamins. International Journal of Agriculture and Biology 7(5): 735–739.]Search in Google Scholar
[Sajjad Y., Jaskani M.J., Qasim M., Akhtar G., Mehmood A. 2015. Foliar application of growth bioregulators influences floral traits, corm-associated traits and chemical constituents in Gladiolus grandiflorus L. Korean Journal of Horticultural Science and Technology 33(6): 812–819. DOI: 10.7235/hort.2015.15052.10.7235/hort.2015.15052]Abierto DOISearch in Google Scholar
[Sánchez-Moreno C., Larrauri J.A., Saura-Calixto F. 1999. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture 76(2): 270–276. DOI: 10.1002/(sici)1097-0010(199802)76:2<270::aid-jsfa945>3.0.co;2-9.10.1002/(sici)1097-0010(199802)76:2<270::aid-jsfa945>3.0.co;2-9]Abierto DOISearch in Google Scholar
[Sayed S.A., Gadallah M.A.A. 2002. Effects of shoot and root application of thiamin on salt-stressed sunflower plants. Plant Growth Regulation 36(1): 71–80. DOI: 10.1023/a:1014784831387.10.1023/A:1014784831387]Abierto DOISearch in Google Scholar
[Soltani Y., Saffari V.R., Maghsoudi Moud A.A. 2014. Response of growth, flowering and some biochemical constituents of Calendula officinalis L. to foliar application of salicylic acid, ascorbic acid and thiamine. Ethno-Pharmaceutical Products 1(1): 37–44.]Search in Google Scholar
[Tavarini S., Degl’Innocenti E., Remorini D., Massai R., Guidi L. 2008. Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chemistry 107(1): 282–288. DOI: 10.1016/j.foodchem.2007.08.015.10.1016/j.foodchem.2007.08.015]Abierto DOISearch in Google Scholar
[Tunc-Ozdemir M., Miller G., Song L., Kim J., Sodek A., Koussevitzky S. et al. 2009. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiology 151: 421–432. DOI: 10.1104/pp.109.140046.10.1104/pp.109.140046]Abierto DOISearch in Google Scholar