[APEDA 2015. Pomegranate. In: Study on identification of export oriented integrated infrastructure for agri products from Maharashtra & Gujarat. Agriculture Produce Export Development Authority, pp. 20–22.]Search in Google Scholar
[Arefi A., Motlagh A.M., Mollazade K., Teimourlou R.F. 2011. Recognition and localization of ripen tomato based on machine vision. Australian Journal of Crop Science 5(10): 1144–1149.]Search in Google Scholar
[Babu K.D., Marathe R.A., Jadhav V.T. 2012. Post harvest management of pomegranate. ICAR – National Research Centre on Pomegranate, Solapur, India, 116 p.]Search in Google Scholar
[Benagi V.I., Nargund V., Balikai R., Ravikumar M. 2009. Pomegranate – Identification and Management of Diseases, Insect Pests and Disorders. University of Agricultural Sciences, Dharwad, India.]Search in Google Scholar
[Clement J., Novas N., Gazquez J.A., Manzano-Agugliaro F. 2013. An active contour computer algorithm for the classification of cucumbers. Computers and Electronics in Agriculture 92: 75–81. DOI: 10.1016/j.compag.2013.01.006.10.1016/j.compag.2013.01.006]Abierto DOISearch in Google Scholar
[Deepa P., Geethalakshmi S.N. 2011. Improved water-shed segmentation for apple fruit grading. Proceedings of the International Conference on Process Automation, Control and Computing, IEEE, 5 p. DOI: 10.1109/pacc.2011.5979003.10.1109/pacc.2011.5979003]Abierto DOISearch in Google Scholar
[Dua S., Acharya U.R., Chowriappa P., Sree S.V. 2012. Wavelet-based energy features for glaucomatous image classification. IEEE Transactions on Information Technology in Biomedicine 16(1): 80–87. DOI: 10.1109/titb.2011.2176540.10.1109/titb.2011.217654022113813]Abierto DOISearch in Google Scholar
[Font D., Tresanchez M., Pallejà T., Teixidó M., Martinez D., Moreno J., Palacín J. 2014. An image processing method for in-line nectarine variety verification based on the comparison of skin feature histogram vectors. Computers and Electronics in Agriculture 102: 112–119. DOI: 10.1016/j.com-pag.2014.01.013.10.1016/j.com-pag.2014.01.013]Abierto DOISearch in Google Scholar
[Ghazali K.H., Mansor M.F., Mustafa M.M., Hussain A. 2007. Feature extraction technique using discrete wavelet transform for image classification. Proceedings of the 5th Student Conference on Research and Development, IEEE, 4 p. DOI: 10.1109/scored.2007.4451366.10.1109/scored.2007.4451366]Abierto DOISearch in Google Scholar
[Gonzalez R.C., Woods R.E., Eddins S.L. 2009. Digital Image Processing Using MATLAB, 2nd edition. Gatesmark Publishing, 827 p.]Search in Google Scholar
[Hazra T.K., Guhathakurta R. 2016. Comparing wavelet and wavelet packet image denoising using thresholding techniques. International Journal of Science and Research 5(6): 790–796. DOI: 10.21275/v5i6.nov164305.10.21275/v5i6.NOV164305]Abierto DOISearch in Google Scholar
[Jamil N., Mohamed A., Abdullah S. 2009. Automated grading of palm oil fresh fruit bunches (FFB) using neuro-fuzzy technique. Proceedings of the International Conference of Soft Computing and Pattern Recognition, IEEE, pp. 245–249. DOI: 10.1109/socpar.2009.57.10.1109/socpar.2009.57]Abierto DOISearch in Google Scholar
[Mustafa N.B.A., Ahmed S.K., Ali Z., Yit W.B., Abidin A.A.Z., Sharrif Z.A.M. 2009. Agricultural produce sorting and grading using support vector machines and fuzzy logic. Proceedings of the International Conference on Signal and Image Processing Applications, IEEE, pp. 391–396. DOI: 10.1109/ic-sipa.2009.5478684.10.1109/ic-sipa.2009.5478684]Abierto DOISearch in Google Scholar
[Omid M., Abbasgolipour M., Keyhani A., Mohtasebi S.S. 2010. Implementation of an efficient image processing algorithm for grading raisins. International Journal of Signal and Image Processing 1(1): 31–34.]Search in Google Scholar
[Rocha A., Hauagge D.C., Wainer J., Goldenstein S. 2010. Automatic fruit and vegetable classification from images. Computers and Electronics in Agriculture 70(1): 96–104. DOI: 10.1016/j.compag.2009.09.002.10.1016/j.compag.2009.09.002]Abierto DOISearch in Google Scholar
[Teimouri N., Omid M., Mollazade K., Rajabipour A. 2014. A novel artificial neural networks assisted segmentation algorithm for discriminating almond nut and shell from background and shadow. Computers and electronics in agriculture 105: 34–43. DOI: 10.1016/j.compag.2014.04.008.10.1016/j.compag.2014.04.008]Abierto DOISearch in Google Scholar
[Youwen T., Tianlai L., Yan N. 2008. The recognition of cucumber disease based on image processing and support vector machine. Proceedings of the Congress on Image and Signal Processing 2: 262–267. DOI: 10.1109/cisp.2008.29.10.1109/CISP.2008.29]Abierto DOISearch in Google Scholar