1. bookVolumen 73 (2022): Edición 1 (February 2022)
Detalles de la revista
License
Formato
Revista
eISSN
1339-309X
Primera edición
07 Jun 2011
Calendario de la edición
6 veces al año
Idiomas
Inglés
Acceso abierto

An improved control strategy based sliding mode approach for high-order systems with mismatched disturbances

Publicado en línea: 12 Mar 2022
Volumen & Edición: Volumen 73 (2022) - Edición 1 (February 2022)
Páginas: 11 - 18
Recibido: 04 Nov 2021
Detalles de la revista
License
Formato
Revista
eISSN
1339-309X
Primera edición
07 Jun 2011
Calendario de la edición
6 veces al año
Idiomas
Inglés

[1] Y. Errami, M. Ouassaid, M. Cherkaoui, and M. Maaroufi, “Variable Structure Sliding Mode Control and Direct Torque Control of Wind Power Generation System Based on the Pm Synchronous Generator”, Journal of Electrical Engineering, vol. 66, no. 3, pp. 121–131, 2015.10.2478/jee-2015-0020 Search in Google Scholar

[2] C. E. Boudjedir, D. Boukhetala, and M. Bouri, “Iterative learning control of multivariable uncertain nonlinear systems with nonrepetitive trajectory”, Nonlinear Dynamics, vol. 95, no. 3, pp. 2197–2208, 2019. Search in Google Scholar

[3] C. E. Boudjedir, D. Boukhetala, and M. Bouri, “Model-free Iterative Learning Control with Nonrepetitive Trajectories for Second-Order MIMO Nonlinear Systems- Application to a Delta Robot”, IEEE Transactions on Industrial Electronics, vol. 68, no. 8, pp. 7433–7443, 2021. Search in Google Scholar

[4] A. Elghoul, A. Tellili, and M. Abdelkrim, “Reconfigurable control of flexible joint robot with actuator fault and uncertainty”, Journal of Electrical Engineering, vol. 70, no. 2, pp. 130–137, 2019.10.2478/jee-2019-0019 Search in Google Scholar

[5] C. E. Boudjedir and D. Boukhetala, “Adaptive robust iterative learning control with application to a Delta robot”, Proceedings of the Institution of Mechanical Engineers, Part I, Journal of Systems and Control Engineering, vol. 235, no. 2, pp. 207–221, 2021.10.1177/0959651820938531 Search in Google Scholar

[6] Z. Chen, Q. Li, X. Ju, and F. Cen, “Barrier Lyapunov Function-Based Sliding Mode Control for BWB Aircraft With Mismatched Disturbances and Output Constraints”, IEEE Access, vol. 7, pp. 175341-175352, 2019. Search in Google Scholar

[7] M. Pokorný, T. Dočekal, and D. Rosinová, “Nonlinear modelling and optimal control via Takagi-Sugeno fuzzy techniques: A quadrotor stabilization”, vol. 71, no. 1, pp. 1–10, 2020.10.2478/jee-2020-0001 Search in Google Scholar

[8] A. Trizuljak, F. Duchoň, J. Rodina, A. Babinec, M. Dekan, and R. Mykhailyshyn, “Control of a small quadrotor for swarm operation”, Journal of Electrical Engineering, vol. 70, no. 1, pp. 3–15, 2019.10.2478/jee-2019-0001 Search in Google Scholar

[9] M. Rachedi, B. Hemici, and M. Bouri, “Design of an H1 controller for the Delta robot: experimental results”, vol. 29, no. 18, pp. 1165–1181, 2015. Search in Google Scholar

[10] J. Zhang, X. Liu, Y. Xia, Z. Zuo, and Y. Wang, “Disturbance Observer-Based Integral Sliding-Mode Control for Systems With Mismatched Disturbances”, IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 7040–7048, 2016. Search in Google Scholar

[11] C. E. Boudjedir, D. Boukhetala, and M. Bouri, “Nonlinear PD plus sliding mode control with application to a parallel delta robot”, Journal of Electrical Engineering, vol. 69, no. 5, pp. 329-336, 2018, 2018.10.2478/jee-2018-0048 Search in Google Scholar

[12] S. Meo and V. Sorrentino, “Discrete-Time Integral Sliding Mode Control with Disturbances Compensation and Reduced Chattering for Pv Grid-Connected Inverter”, Journal of Electrical Engineering, vol. 66, no. 2, pp. 61–69, 2015.10.1515/jee-2015-0010 Search in Google Scholar

[13] R. Errouissi, M. Ouhrouche, W. H. Chen, and A. M. Trzynadlowski, “Robust Nonlinear Predictive Controller for Permanent-Magnet Synchronous Motors With an Optimized Cost Function”, IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 2849–2858, 2012. Search in Google Scholar

[14] J. Yang, A. Zolotas, W. H. Chen, K. Michail, and S. Li, “Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach”, ISA Transactions, vol. 50, no. 3, pp. 389–396, 2011.10.1016/j.isatra.2011.01.00621349514 Search in Google Scholar

[15] J. Huang, S. Ri, T. Fukuda, and Y. Wang, “A Disturbance Observer Based Sliding Mode Control for a Class of Underactuated Robotic System with Mismatched Uncertainties”, IEEE Transactions on Automatic Control, vol. 64, no. 6, pp. 2480–2487, 2019. Search in Google Scholar

[16] W. H. Chen, “Nonlinear Disturbance Observer-Enhanced Dynamic Inversion Control of Missiles”, Journal of Guidance, Control, and Dynamics, vol. 26, no. 1, pp. 161–166, 2003.10.2514/2.5027 Search in Google Scholar

[17] J. Yang, S. Li, and X. Yu, “Sliding-Mode Control for Systems With Mismatched Uncertainties via a Disturbance Observer”, IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 160–169, 2013.10.1109/TIE.2012.2183841 Search in Google Scholar

[18] X. Du, X. Fang, and F. Liu, “Continuous Full-Order Non-singular Terminal Sliding Mode Control for Systems With Matched and Mismatched Disturbances”, IEEE Access, vol. 7, pp. 130970–130976, 2019. Search in Google Scholar

[19] L. Zhou, Z. Che, and C. Yang, “Disturbance Observer-Based Integral Sliding Mode Control for Singularly Perturbed Systems With Mismatched Disturbances”, IEEE Access, vol. 6, pp. 9854–9861, 2018. Search in Google Scholar

[20] E. Kayacan, “Sliding mode control for systems with mismatched time-varying uncertainties via a self-learning disturbance observer”, Transactions of the Institute of Measurement and Control, vol. 41, no. 7, pp. 2039–2052, 2018. Search in Google Scholar

[21] E. Kayacan and T. I. Fossen, “Feedback Linearization Control for Systems with Mismatched Uncertainties via Disturbance Observers”, Asian Journal of Control, vol. 21, no. 3, pp. 1064–1076, 2018. Search in Google Scholar

[22] D. Ginoya, P. D. Shendge, and S. B. Phadke, “Feedback Linearization Control for Systems with Mismatched Uncertainties via Disturbance Observers”, IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1983–1992, 2014. Search in Google Scholar

[23] D. Ginoya, P. D. Shendge, and S. B. Phadke, “Disturbance observer based sliding mode control of nonlinear mismatched uncertain systems”, Communications in Nonlinear Science and Numerical Simulation, vol. 26, no. 1-3, pp. 98–107, 2015.10.1016/j.cnsns.2015.02.008 Search in Google Scholar

[24] J. Guo, Y. Liu, and J. Zhou, “New adaptive sliding mode control for a mismatched second-order system using an extended disturbance observer”, Transactions of the Institute of Measurement and Control, vol. 41, no. 1, pp. 276–284, 2018.10.1177/0142331218761560 Search in Google Scholar

[25] H. Sun, S. Li, J. Yang, and W. X. Zheng, “Global output regulation for strict-feedback nonlinear systems with mismatched non-vanishing disturbances”, International Journal of Robust and Nonlinear Control, vol. 25, no. 15, pp. 2631–2645, 2014. Search in Google Scholar

[26] J. Yang, W. H. Chen, and S. Li, “Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties”, IET Control Theory Applications, vol. 5, no. 18, pp. 2053–2062, 2011. Search in Google Scholar

[27] Y. Cheng, W. Lu, H. Du, G. Wen, and T. Huang, “Designing Discrete-Time Sliding Mode Controller With Mismatched Disturbances Compensation”, IEEE Transactions on Industrial Informatics, vol. 16, no. 6, pp. 4109–4118, 2020. Search in Google Scholar

[28] S. Li, L. Zhang, J. Yang, and X. Yu, “Invariant Manifold Based Output-Feedback Sliding Mode Control for Systems With Mismatched Disturbances”, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 3, pp. 933–937, 2021.10.1109/TCSII.2020.3011458 Search in Google Scholar

[29] S. Li, J. Yang, W. H. Chen, and X. Chen, “Generalized Extended State Observer Based Control for Systems With Mismatched Uncertainties”, IEEE Transactions on Industrial Electronics, vol. 59, no. 12, pp. 4792–4802, 2012. Search in Google Scholar

[30] J. Wang, C. Shao, and Y. Q. Chen, “Fractional Order Sliding Mode Control via Disturbance Observer for a Class of Fractional Order Systems with Mismatched Disturbance”, SSRN Electronic Journal, 2018.10.2139/ssrn.3281368 Search in Google Scholar

[31] H. Ngoc Thanh and S. Hong, “An Extended Multi-Surface Sliding Control for Matched/Mismatched Uncertain Nonlinear Systems Through a Lumped Disturbance Estimator”, IEEE Access, vol. 8, pp. 91468-91475, 2020. Search in Google Scholar

[32] J. Slotine and W. Li, Applied nonlinear control, Prentice Hall, 1991. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo