1. bookVolumen 72 (2021): Edición 5 (September 2021)
Detalles de la revista
License
Formato
Revista
eISSN
1339-309X
Primera edición
07 Jun 2011
Calendario de la edición
6 veces al año
Idiomas
Inglés
Acceso abierto

Estimation of parameters of a sum of sinusoids sampled below the Nyquist rate with frequencies away from the grid

Publicado en línea: 20 Nov 2021
Volumen & Edición: Volumen 72 (2021) - Edición 5 (September 2021)
Páginas: 297 - 305
Recibido: 08 May 2021
Detalles de la revista
License
Formato
Revista
eISSN
1339-309X
Primera edición
07 Jun 2011
Calendario de la edición
6 veces al año
Idiomas
Inglés

[1] D. Rife and R. Boorstyn, “Single tone parameter estimation from discrete-time observations,” IEEE Transactions on Information Theory, vol. 20, no. 5, pp. 591–598, 1974.10.1109/TIT.1974.1055282 Search in Google Scholar

[2] B. G. Quinn, “Estimating frequency by interpolation using Fourier coefficients”, vol. 42, no. 5, pp. 1264–1268, May 1994. Search in Google Scholar

[3] C. Candan, “A method for fine resolution frequency estimation from three DFT samples,” IEEE Signal Processing Letters, vol. 18, no. 6, pp. 351–354, 2011.10.1109/LSP.2011.2136378 Search in Google Scholar

[4] E. Aboutanios and B. Mulgrew, “Iterative frequency estimation by interpolation on Fourier coefficients,” IEEE Transactions on Signal Processing, vol. 53, no. 4, pp. 1237–1242, 2005. Search in Google Scholar

[5] E. Aboutanios, “Estimation of the frequency and decay factor of a decaying exponential in noise,” IEEE Transactions on Signal Processing, vol. 58, no. 2, pp. 501–509, 2010.10.1109/TSP.2009.2031299 Search in Google Scholar

[6] I. Djurović, “Estimation of the sinusoidal signal frequency based on the marginal median DFT,” IEEE Transactions on. Signal Processing, vol. 55, no. 5, pp. 2043–2051, 2007. Search in Google Scholar

[7] I. Djurović and V. V. Lukin, “Estimation of single-tone signal parameters by using the L-DFT,” Signal Processing, vol. 87, no. 6, pp. 1537–1544, 2007. Search in Google Scholar

[8] S. Ye and E. Aboutanios, “Rapid accurate frequency estimation of multiple resolved exponentials in noise,” Signal Processing, vol. 132, pp. 29–39, 2017.10.1016/j.sigpro.2016.09.010 Search in Google Scholar

[9] L. Stanković, M. Brajović, I. Stanković, C. Ioana, and M. Daković, “Reconstruction error in nouniformly sampled approximately sparse signals,” IEEE Geoscience and Remote Sensing Letters, vol. 17, 2020, doi: 10.1109/LGRS.2020.2968137.10.1109/LGRS.2020.2968137 Search in Google Scholar

[10] L. Stanković, M. Daković, I. Stanković, and S. Vujović, “On the errors in randomly sampled nonsparse signals reconstructed with a sparsity assumption,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 12, pp. 2453–2456, 2017, doi: 10.1109/LGRS.2017.2768664.10.1109/LGRS.2017.2768664 Search in Google Scholar

[11] L. Stanković and M. Daković, “On a gradient-based algorithm for sparse signal reconstruction in the signal/measurements domain,” Mathematical Problems in Engineering, Article ID 6212674, 2016, doi: 10.1155/2016/6212674.10.1155/2016/6212674 Search in Google Scholar

[12] L. Stanković, S. Stanković, I. Orović, and Y. Zhang, “Time-frequency analysis of micro-Doppler signals based on compressive sensing,” Compressive Sensing for Urban Radar, Ed. M. Amin, CRC-Press, 2014.10.1007/978-3-319-23950-7_6 Search in Google Scholar

[13] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005. Search in Google Scholar

[14] I. Djurović, L. Stanković, and J. F. Böhme, “Robust L-estimation based forms of signal transforms and time-frequency representations,” IEEE Transactions on Signal Processing, vol. 51, no. 7, pp. 1753–1761, 2003. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo