[
[1] Abdollahi A., Alizadeh A. and Baharvandi H. (2014): Dry sliding tribological behavior and mechanical properties of Al2024–5 wt.%B4C nanocomposite produced by mechanical milling and hot extrusion.– Materials and Design, vol.55, pp.471-481.
]Search in Google Scholar
[
[2] Ashwath P., Joel J., Kumar H. G., Xavior M., Goel A., Nigam T. and Rathi M. (2018): Processing and characterization of extruded 2024 series of aluminum alloy.– Materials Today: Proceedings, vol.5, pp.12479-12483.10.1016/j.matpr.2018.02.228
]Search in Google Scholar
[
[3] Guia-Tello J.C., Garay-Reyes C.G., Medrano-Prieto H.M., Esparza-Rodriguez M.A., Maldonado-Orozco M.C., Rodriguez-Cabriales G. and Martinez-Sanchez R. (2019): Effect of the age-hardening time on the microstructure of cold rolled Al2024 alloy.– Microsc. Microanal., vol.25, No.2, pp.2626-2627.10.1017/S1431927619013862
]Search in Google Scholar
[
[4] Fang G., Ma L. and Zeng P. (2008): Hot formability investigation of the pre-extruded 2024 aluminum alloy.– The 9th International Conference on Technology of Plasticity, pp.328-332.
]Search in Google Scholar
[
[5] Crispim V.R. and Silva J.J.G. (1998): Detection of corrosion in aircraft aluminum alloys.– Applied Radiation and Isotopes, vol.49, No.7, pp.779-782.10.1016/S0969-8043(97)10006-9
]Search in Google Scholar
[
[6] Khan I., Ismail U., Noman D., Siddiqui M. and Shahzad M. (2017): Effect of process parameters on formability of aluminum 2024.– Journal of Space Technology, vol.7, No.1, pp.7-11.
]Search in Google Scholar
[
[7] Hinesley C.P. and Conrad H. (1973): Effects of temperature and ram speed on the flow pattern in axisymmetric extrusions of 2024 Al alloy.– Materials Science and Engineering, vol.12, pp.7-58.10.1016/0025-5416(73)90071-2
]Search in Google Scholar
[
[8] Hu L., Li Z. and Wang E. (1999): Influence of extrusion ratio and temperature on microstructure and mechanical properties of 2024 aluminum alloy consolidated from nanocrystalline alloy powders via hot hydrostatic extrusion.– Powder Metallurgy, vol.42, No.2, pp.153-156.10.1179/003258999665503
]Search in Google Scholar
[
[9] Lou G., Xu S., Teng X., Ye Z., Jia P., Wu H., Leng J. and Zuo M. (2019): Effects of extrusion on mechanical and corrosion resistance properties of biomedical Mg-Zn-Nd-xCa alloys.– Materials, vol.12, No.1049, pp.1-13.10.3390/ma12071049647932330934995
]Search in Google Scholar
[
[10] Shaw B.A. and Kelly R.G. (2006): What is corrosion?.– The Electrochemical Society Interface, pp.24-26.10.1149/2.F06061IF
]Search in Google Scholar
[
[11] William H. (1985): Properties and Selection: Non Ferrous Alloys and Pure Materials.– Metal Handbook, vol.9.
]Search in Google Scholar
[
[12] Oladele I.O., Betiku O.T., Okoro A.M., Eghonghon O. and Saliu L.O. (2018): Comparative investigation of the mechanical properties and corrosion behavior of dissimilar metal weld fusion zone, heat affected zones and base metals.– Annals of Faculty Engineering Hunedoara, International Journal of Engineering, pp.187-191.
]Search in Google Scholar
[
[13] Anghelina F., Ionita I., Ungureanu D., Stoian E., Popescu I., Bratu V., Petre I., Popa C. and Negrea A. (2017): Structural aspects revealed by X-Ray Diffraction for aluminum alloys 2024 type.– Key Eng. Materials, vol.750, pp.20-25.10.4028/www.scientific.net/KEM.750.20
]Search in Google Scholar
[
[14] Metals Handbook, (1990): Properties and Selection: Nonferrous Alloys and Special-Purpose Materials.– vol.2, ASM International 10th Ed.
]Search in Google Scholar
[
[15] Talbot D.E., and Talbot J.D. (1998): Corrosion Science and Technology.– CRC Press LLC.10.1201/9781420049886
]Search in Google Scholar
[
[16] Trethewey R.K. and Chamberlain J. (1996): Corrosion for Science and Engineering. – 2nd Edition, Longman Group Limited.
]Search in Google Scholar