1. bookVolumen 68 (2022): Edición 2 (June 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2449-8343
Primera edición
04 Apr 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Use of polyunsaturated fatty acids in prevention and treatment of gastrointestinal diseases, obesity and cancer

Publicado en línea: 02 Oct 2022
Volumen & Edición: Volumen 68 (2022) - Edición 2 (June 2022)
Páginas: 76 - 85
Recibido: 05 Apr 2022
Aceptado: 20 May 2022
Detalles de la revista
License
Formato
Revista
eISSN
2449-8343
Primera edición
04 Apr 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Tvrzicka E, Kremmyda LS, Stankova B, Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease-a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011; 155(2):117-130. doi: http://dx.doi.org/10.5507/bp.2011.03810.5507/bp.2011.03821804620 Search in Google Scholar

2. Nelson DL, Cox MM. Lipid Biosynthesis. In: Principles of Biochemistry. New York: W.H. Freeman and Company 2005; 787-815. Search in Google Scholar

3. Burdge GC. Polyunsaturated fatty acid intakes and α-linolenic acid metabolism. Am J Clin Nutr 2011; 93(3):665-667. doi: http://dx.doi.org/10.3945/ajcn.110.00816910.3945/ajcn.110.00816921191139 Search in Google Scholar

4. Scientific Advisory Committee on Nutrition (SACN). Advice on fish consumption: benefits and risks. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/338801/SACN_Advice_on_Fish_Consumption.pdf . Published: 2004. Accessed March 4, 2022. Search in Google Scholar

5. Shahidi F, Ambigaipalan P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu Rev Food Sci Technol 2018; 9:345-381. doi: http://dx.doi.org/10.1146/annurev-food-111317-09585010.1146/annurev-food-111317-09585029350557 Search in Google Scholar

6. Brenna JT, Salem N Jr, Sinclair AJ, Cunnane SC. Alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Es-sent Fatty Acids 2009; 80(2-3):85-91. doi: http://dx.doi.org/10.1016/j.plefa.2009.01.00410.1016/j.plefa.2009.01.00419269799 Search in Google Scholar

7. Simopoulos AP, Leaf A, Salem N Jr. Essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Ann Nutr Metab 1999; 43(2):127-130. doi: http://dx.doi.org/10.1159/00001277710.1159/00001277710436312 Search in Google Scholar

8. Burdge GC, Powell J, Dadd T, Talbot D, Civil J, Calder PC. Acute consumption of fish oil improves postprandial VLDL profiles in healthy men aged 50-65 years. Br J Nutr 2009; 102(1):160-165. doi: http://dx.doi.org/10.1017/S000711450814355010.1017/S000711450814355019138437 Search in Google Scholar

9. Calder PC, Yaqoob P. Omega-3 (n-3) fatty acids, cardiovascular disease and stability of athero-sclerotic plaques. Cell Mol Biol (Noisy-le-grand) 2010; 56(1):28-37. Search in Google Scholar

10. Calder PC, Yaqoob P. Omega-3 polyunsaturated fatty acids and human health outcomes. Bio- factors 2009; 35(3):266-272. doi: http://dx.doi.org/10.1002/biof.4210.1002/biof.4219391122 Search in Google Scholar

11. Simopoulos AP. Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 1991; 54(3):438-463. doi: http://dx.doi.org/10.1093/ajcn/54.3.43810.1093/ajcn/54.3.4381908631 Search in Google Scholar

12. Calder PC. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot Essent Fatty Acids 2008; 79(3-5):101-108. doi: http://dx.doi.org/10.1016/j.plefa.2008.09.01610.1016/j.plefa.2008.09.01618951005 Search in Google Scholar

13. Shaikh SR, Edidin M. Immunosuppressive effects of polyunsaturated fatty acids on antigen presentation by human leukocyte antigen class I molecules. J Lipid Res 2007; 48(1):127-138. doi: http://dx.doi.org/10.1194/jlr.M600365-JLR20 Search in Google Scholar

14. Thies F, Nebe-von-Caron G, Powell JR, Yaqoob P, Newsholme EA, Calder PC. Dietary supplementation with eicosapentaenoic acid, but not with other long-chain n-3 or n-6 polyunsaturated fatty acids, decreases natural killer cell activity in healthy subjects aged >55 y. Am J Clin Nutr 2001; 73(3):539-548. doi: http://dx.doi.org/10.1093/ajcn/73.3.53910.1093/ajcn/73.3.53911237929 Search in Google Scholar

15. Chang HY, Lee HN, Kim W, Surh YJ. Docosahexaenoic acid induces M2 macrophage polarization through peroxisome proliferator-activated receptor γ activation. Life Sci 2015; 120:39-47. doi: http://dx.doi.org/10.1016/j.lfs.2014.10.01410.1016/j.lfs.2014.10.01425445227 Search in Google Scholar

16. Park BK, Park S, Park JB, Park MC, Min TS, Jin M. Omega-3 fatty acids suppress Th2-associated cytokine gene expressions and GATA transcription factors in mast cells. J Nutr Biochem 2013; 24(5):868-876. doi: http://dx.doi.org/10.1016/j.jnutbio.2012.05.00710.1016/j.jnutbio.2012.05.00722902330 Search in Google Scholar

17. Zapata-Gonzalez F, Rueda F, Petriz J, et al. Human dendritic cell activities are modulated by the omega-3 fatty acid, docosahexaenoic acid, mainly through PPAR(gamma):RXR heterodimers: comparison with other polyunsaturated fatty acids. J Leukoc Biol 2008; 84(4):1172-1182. doi: http://dx.doi.org/10.1189/jlb.100768810.1189/jlb.100768818632990 Search in Google Scholar

18. Jin M, Park S, Park BK, et al. Eicosapentaenoic acid and docosahexaenoic acid suppress Th2 cytokine expression in RBL-2H3 basophilic leukemia cells. J Med Food 2014; 17(2):198-205. doi: http://dx.doi.org/10.1089/jmf.2013.293510.1089/jmf.2013.293524460246 Search in Google Scholar

19. Gorjão R, Verlengia R, Lima TM, et al. Effect of docosahexaenoic acid-rich fish oil supplementation on human leukocyte function. Clin Nutr 2006; 25(6):923-938. doi: http://dx.doi.org/10.1016/j.clnu.2006.03.00410.1016/j.clnu.2006.03.00416697494 Search in Google Scholar

20. Gutiérrez S, Svahn SL, Johansson ME. Effects of omega-3 fatty acids on immune cells. Int J Mol Sci 2019; 20(20):5028. doi: http://dx.doi.org/10.3390/ijms2020502810.3390/ijms20205028683433031614433 Search in Google Scholar

21. Costantini L, Molinari R, Farinon B, Merendino N. Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci 2017; 18(12):2645. doi: http://dx.doi.org/10.3390/ijms1812264510.3390/ijms18122645575124829215589 Search in Google Scholar

22. Larsson K, Quinn PJ. Occurrence and characteristics of oils and fats. In: The Lipid Handbook. London, Chapman and Hall 1994; 47-223 Search in Google Scholar

23. Calder PC. Eicosanoids. Essays Biochem 2020; 64(3):423-441. doi: http://dx.doi.org/10.1042/EBC2019008310.1042/EBC2019008332808658 Search in Google Scholar

24. Vergroesen AJ. Essential fatty acids, biomembranes and eicosanoid metabolism. In: Vergroesen AJ, Crawford M, editors. The role of fats in human nutrition. London, Academic Press.1989; 17-29 Search in Google Scholar

25. Schoonjans K, Martin G, Staels B, Auwerx J. Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr Opin Lipidol 1997; 8(3):159-166. doi: http://dx.doi.org/10.1097/00041433-199706000-0000610.1097/00041433-199706000-000069211064 Search in Google Scholar

26. Calder PC, Deckelbaum RJ. Harmful, harmless or helpful? The n-6 fatty acid debate goes on. Curr Opin Clin Nutr Metab Care 2011; 14(2):113-114. doi: http://dx.doi.org/10.1097/MCO.0b013e328343d89510.1097/MCO.0b013e328343d89521311251 Search in Google Scholar

27. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 2002; 56(8):365-379. doi: http://dx.doi.org/10.1016/s0753-3322(02)00253-610.1016/S0753-3322(02)00253-6 Search in Google Scholar

28. Gómez Candela C, Bermejo López LM, Loria Kohen V. Importance of a balanced omega-6/omega-3 ratio for the maintenance of health: nutritional recommendations. Nutr Hosp 2011; 26(2):323-329. doi: http://dx.doi.org/10.1590/S0212-16112011000200013 Search in Google Scholar

29. Li N, Jia M, Deng Q, et al. Effect of low-ratio n-6/n-3 PUFA on blood lipid level: a meta-analysis. Hormones (Athens). 2021; 20(4):697-706. doi: http://dx.doi.org/10.1007/s42000-020-00248- Search in Google Scholar

30. Li N, Yue H, Jia M, et al. Effect of low-ratio n-6/n-3 PUFA on blood glucose: a meta-analysis. Food Funct 2019; 10(8):4557-4565. doi: http://dx.doi.org/10.1039/c9fo00323a10.1039/C9FO00323A Search in Google Scholar

31. Wei Y, Meng Y, Li N, Wang Q, Chen L. The effects of low-ratio n-6/n-3 PUFA on biomarkers of inflammation: a systematic review and meta-analysis. Food Funct 2021; 12(1):30-40. doi: http://dx.doi.org/10.1039/d0fo01976c10.1039/D0FO01976C Search in Google Scholar

32. Loef M, Walach H. The omega-6/omega-3 ratio and dementia or cognitive decline: a systematic review on human studies and biological evidence. J Nutr Gerontol Geriatr 2013; 32(1):1-23. doi: http://dx.doi.org/10.1080/21551197.2012.75233510.1080/21551197.2012.75233523451843 Search in Google Scholar

33. Simopoulos AP. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016; 8(3):128. Published 2016 Mar 2. doi: http://dx.doi.org/10.3390/nu8030128 Search in Google Scholar

34. Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine 2008; 233(6):674-688. doi: http://dx.doi.org/10.3181/0711-MR-31110.3181/0711-MR-31118408140 Search in Google Scholar

35. Chajès V, Bougnoux P. Omega-6/omega-3 polyunsaturated fatty acid ratio and cancer. World Rev Nutr Diet 2003; 92:133-151.10.1159/000073797 Search in Google Scholar

36. Carroll MW, Kuenzig ME, Mack DR, et al. The impact of inflammatory bowel disease in Canada 2018: Children and adolescents with IBD. J Can Assoc Gastroenterol 2019; 2(Suppl 1):S49-S67. doi: http://dx.doi.org/10.1093/jcag/gwy05610.1093/jcag/gwy056651224431294385 Search in Google Scholar

37. Barbalho SM, Goulart RA, Aranão ALC, de Oliveira PGC. Inflammatory bowel diseases and fermentable oligosaccharides, disaccharides, monosaccharides, and polyols: An Overview. J Med Food 2018; 21(7):633-640. doi: http://dx.doi.org/10.1089/jmf.2017.012010.1089/jmf.2017.012029328869 Search in Google Scholar

38. Mozaffari H, Daneshzad E, Larijani B, Bellissimo N, Azadbakht L. Dietary intake of fish, n-3 polyunsaturated fatty acids, and risk of inflammatory bowel disease: a systematic review and meta-analysis of observational studies. Eur J Nutr 2020; 59(1):1-17. doi: http://dx.doi.org/10.1007/s00394-019-01901-010.1007/s00394-019-01901-030680455 Search in Google Scholar

39. Ibrahim A, Aziz M, Hassan A, et al. Dietary α-linolenic acid-rich formula reduces adhesion molecules in rats with experimental colitis. Nutrition 2012; 28(7-8):799-802. doi: http://dx.doi.org/10.1016/j.nut.2011.10.00810.1016/j.nut.2011.10.00822261574 Search in Google Scholar

40. Ferrucci L, Cherubini A, Bandinelli S, et al. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab 2006; 91(2):439-446. doi: http://dx.doi.org/10.1210/jc.2005-130310.1210/jc.2005-130316234304 Search in Google Scholar

41. Lewis JD, Abreu MT. Diet as a trigger or therapy for inflammatory bowel diseases. Gastroenterology 2017; 152(2):398-414.e6. doi: http://dx.doi.org/10.1053/j.gastro.2016.10.01910.1053/j.gastro.2016.10.01927793606 Search in Google Scholar

42. Paik J, Fierce Y, Treuting PM, Brabb T, Maggio-Price L. High-fat diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible Mdr1a-/- male mice. J Nutr 2013; 143(8):1240-1247. doi: http://dx.doi.org/10.3945/jn.113.17461510.3945/jn.113.17461523761644 Search in Google Scholar

43. Gruber L, Kisling S, Lichti P, et al. High fat diet accelerates pathogenesis of murine Crohn’s disease-like ileitis independently of obesity. PLoS One 2013; 8(8):e71661. Published 2013 Aug 16. doi: http://dx.doi.org/10.1371/journal.pone.0071661 Search in Google Scholar

44. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007; 104(34):13780-13785. doi: http://dx.doi.org/10.1073/pnas.070662510410.1073/pnas.0706625104195945917699621 Search in Google Scholar

45. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334(6052):105-108. doi: http://dx.doi.org/10.1126/science.120834410.1126/science.1208344336838221885731 Search in Google Scholar

46. David L, Maurice C, Carmody R et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505:559-563. doi: http://dx.doi.org/10.1038/nature1282010.1038/nature12820395742824336217 Search in Google Scholar

47. Arent SM, Walker AJ, Pellegrino JK, et al. The combined effects of exercise, diet, and a multi-ingredient dietary supplement on body composition and adipokine changes in overweight adults. J Am Coll Nutr 2018; 37(2):111-120. doi: http://dx.doi.org/10.1080/07315724.2017.136803910.1080/07315724.2017.136803929111889 Search in Google Scholar

48. Huerta AE, Navas-Carretero S, Prieto-Hontoria PL, Martínez JA, Moreno-Aliaga MJ. Effects of α-lipoic acid and eicosapentaenoic acid in over-weight and obese women during weight loss. Obesity (Silver Spring). 2015; 23(2):313-321. doi: http://dx.doi.org/10.1002/oby.2096610.1002/oby.2096625594166 Search in Google Scholar

49. Harden CJ, Dible VA, Russell JM, et al. Long-chain polyunsaturated fatty acid supplementation had no effect on body weight but reduced energy intake in overweight and obese women. Nutr Res 2014; 34(1):17-24. doi: http://dx.doi.org/10.1016/j.nutres.2013.10.00410.1016/j.nutres.2013.10.00424418242 Search in Google Scholar

50. Thorsdottir I, Tomasson H, Gunnarsdottir I, et al. Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content. Int J Obes (Lond). 2007; 31(10):1560-1566. doi: http://dx.doi.org/10.1038/sj.ijo.080364310.1038/sj.ijo.080364317502874 Search in Google Scholar

51. Hilgendorf KI, Johnson CT, Mezger A, et al. Omega-3 fatty acids activate ciliary FFAR4 to control adipogenesis. Cell 2019; 179(6):1289-1305.e21. doi: http://dx.doi.org/10.1016/j.cell.2019.11.00510.1016/j.cell.2019.11.005 Search in Google Scholar

52. Flachs P, Rossmeisl M, Bryhn M, Kopecky J. Cellular and molecular effects of n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clin Sci (Lond). 2009; 116(1):1-16. doi: http://dx.doi.org/10.1042/CS2007045610.1042/CS20070456 Search in Google Scholar

53. Hensler M, Bardova K, Jilkova ZM, et al. The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice. Lipids Health Dis 2011; 10:128. Published 2011 Aug 2. doi: http://dx.doi.org/10.1186/1476-511X-10-128 Search in Google Scholar

54. Hein GJ, Bernasconi AM, Montanaro MA, et al. Nuclear receptors and hepatic lipidogenic enzyme response to a dyslipidemic sucrose-rich diet and its reversal by fish oil n-3 polyunsatu-rated fatty acids. Am J Physiol Endocrinol Metab 2010; 298(3):E429-E439. doi: http://dx.doi.org/10.1152/ajpendo.00513.200910.1152/ajpendo.00513.2009 Search in Google Scholar

55. Martínez-Fernández L, Laiglesia LM, Huerta AE, Martínez JA, Moreno-Aliaga MJ. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat 2015; 121(Pt A):24-41. doi: http://dx.doi.org/10.1016/j.prostaglandins.2015.07.00310.1016/j.prostaglandins.2015.07.003 Search in Google Scholar

56. Siriwardhana N, Kalupahana NS, Cekanova M, LeMieux M, Greer B, Moustaid-Moussa N. Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem 2013; 24(4):613-623. doi: http://dx.doi.org/10.1016/j.jnutbio.2012.12.01310.1016/j.jnutbio.2012.12.013 Search in Google Scholar

57. Kalupahana NS, Claycombe KJ, Moustaid-Moussa N. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights. Adv Nutr 2011; 2(4):304-316. doi: http://dx.doi.org/10.3945/an.111.00050510.3945/an.111.000505 Search in Google Scholar

58. Pahlavani M, Razafimanjato F, Ramalingam L, et al. Eicosapentaenoic acid regulates brown adi-pose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes. J Nutr Biochem 2017; 39:101-109. doi: http://dx.doi.org/10.1016/j.jnutbio.2016.08.01210.1016/j.jnutbio.2016.08.012 Search in Google Scholar

59. Harris WS, Luo J, Pottala JV, et al. Red blood cell polyunsaturated fatty acids and mortality in the Women’s Health Initiative Memory Study. J Clin Lipidol 2017; 11(1):250-259.e5. doi: http://dx.doi.org/10.1016/j.jacl.2016.12.01310.1016/j.jacl.2016.12.013 Search in Google Scholar

60. Pietrzyk L, Torres A, Maciejewski R, Torres K. Obesity and obese-related chronic low-grade inflammation in promotion of colorectal cancer development. Asian Pac J Cancer Prev 2015; 16(10):4161-4168. doi: http://dx.doi.org/10.7314/apjcp.2015.16.10.416110.7314/APJCP.2015.16.10.4161 Search in Google Scholar

61. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet 2014; 383(9927):1490-1502. doi: http://dx.doi.org/10.1016/S0140-6736(13)61649-910.1016/S0140-6736(13)61649-9 Search in Google Scholar

62. Nguyen S, Li H, Yu D, et al. Dietary fatty acids and colorectal cancer risk in men: A report from the Shanghai Men’s Health Study and a meta-analysis. Int J Cancer 2021; 148(1):77-89. doi: http://dx.doi.org/10.1002/ijc.3319610.1002/ijc.3319632638381 Search in Google Scholar

63. Zhang C, Yu H, Shen Y, Ni X, Shen S, Das UN. Polyunsaturated fatty acids trigger apoptosis of colon cancer cells through a mitochondrial pathway. Arch Med Sci 2015; 11(5):1081-1094. doi: http://dx.doi.org/10.5114/aoms.2015.54865 Search in Google Scholar

64. Hawcroft G, Loadman PM, Belluzzi A, Hull MA. Effect of eicosapentaenoic acid on E-type prostaglandin synthesis and EP4 receptor signaling in human colorectal cancer cells. Neoplasia 2010; 12(8):618-627. doi: http://dx.doi.org/10.1593/neo.1038810.1593/neo.10388291540620689756 Search in Google Scholar

65. Calviello G, Di Nicuolo F, Gragnoli S, et al. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 2004; 25(12):2303-2310. doi: http://dx.doi.org/10.1093/carcin/bgh26510.1093/carcin/bgh26515358633 Search in Google Scholar

66. Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 2001; 1(1):11-21. doi: http://dx.doi.org/10.1038/3509401710.1038/3509401711900248 Search in Google Scholar

67. Zhang K, Hu Z, Qi H, et al. G-protein-coupled receptors mediate ω-3 PUFAs-inhibited colorectal cancer by activating the Hippo pathway. Oncotarget 2016; 7(36):58315-58330. doi: http://dx.doi.org/10.18632/oncotarget.1108910.18632/oncotarget.11089529543327506947 Search in Google Scholar

68. Calviello G, Resci F, Serini S, et al. Docosahexaenoic acid induces proteasome-dependent degradation of beta-catenin, down-regulation of survivin and apoptosis in human colorectal cancer cells not expressing COX-2. Carcinogenesis 2007; 28(6):1202-1209. doi: http://dx.doi.org/10.1093/carcin/bgl25410.1093/carcin/bgl25417183061 Search in Google Scholar

69. Hawcroft G, Volpato M, Marston G, et al. The omega-3 polyunsaturated fatty acid eicosapentaenoic acid inhibits mouse MC-26 colorectal cancer cell liver metastasis via inhibition of PGE2-dependent cell motility. Br J Pharmacol 2012; 166(5):1724-1737. doi: http://dx.doi.org/10.1111/j.1476-5381.2012.01882.x10.1111/j.1476-5381.2012.01882.x341991422300262 Search in Google Scholar

70. Toit-Kohn JL, Louw L, Engelbrecht AM. Docosahexaenoic acid induces apoptosis in colorectal carcinoma cells by modulating the PI3 kinase and p38 MAPK pathways. J Nutr Biochem 2009; 20(2):106-114. doi: http://dx.doi.org/10.1016/j.jnutbio.2007.12.00510.1016/j.jnutbio.2007.12.00518479896 Search in Google Scholar

71. Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010; 142(5):687-698. doi: http://dx.doi.org/10.1016/j.cell.2010.07.04110.1016/j.cell.2010.07.041295641220813258 Search in Google Scholar

72. Hara T, Hirasawa A, Ichimura A, Kimura I, Tsujimoto G. Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J Pharm Sci 2011; 100(9):3594-3601. doi: http://dx.doi.org/10.1002/jps.2263910.1002/jps.2263921618241 Search in Google Scholar

73. Hossain Z, Hosokawa M, Takahashi K. Growth inhibition and induction of apoptosis of colon cancer cell lines by applying marine phospholipid. Nutr Cancer 2009; 61(1):123-130. doi: http://dx.doi.org/10.1080/0163558080239572510.1080/0163558080239572519116882 Search in Google Scholar

74. D’Eliseo D, Di Rocco G, Loria R, Soddu S, San-toni A, Velotti F. Epitelial-to-mesenchimal transition and invasion are upmodulated by tumor-expressed granzyme B and inhibited by docosahexaenoic acid in human colorectal cancer cells. J Exp Clin Cancer Res 2016; 35:24. Published 2016 Feb 2. doi: http://dx.doi.org/10.1186/s13046-016-0302-610.1186/s13046-016-0302-6473671026830472 Search in Google Scholar

75. Cho Y, Turner ND, Davidson LA, Chapkin RS, Carroll RJ, Lupton JR. A chemoprotective fish oil/pectin diet enhances apoptosis via Bcl-2 promoter methylation in rat azoxymethane-induced carcinomas. Exp Biol Med (Maywood). 2012; 237(12):1387-1393. doi: http://dx.doi.org/10.1258/ebm.2012.01224410.1258/ebm.2012.012244399996723354397 Search in Google Scholar

76. Cho Y, Turner ND, Davidson LA, Chapkin RS, Carroll RJ, Lupton JR. Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation. Exp Biol Med (Maywood). 2014; 239(3):302-310. doi: http://dx.doi.org/10.1177/153537021351492710.1177/1535370213514927399997024495951 Search in Google Scholar

77. Song M, Zhang X, Meyerhardt JA, et al. Marine ω-3 polyunsaturated fatty acid intake and survival after colorectal cancer diagnosis. Gut 2017; 66(10):1790-1796. doi: http://dx.doi.org/10.1136/gutjnl-2016-31199010.1136/gutjnl-2016-311990524739627436272 Search in Google Scholar

78. Song M, Chan AT, Fuchs CS, et al. Dietary intake of fish, ω-3 and ω-6 fatty acids and risk of colorectal cancer: A prospective study in U.S. men and women. Int J Cancer 2014; 135(10):2413-2423. doi: http://dx.doi.org/10.1002/ijc.2887810.1002/ijc.28878415942524706410 Search in Google Scholar

79. Van Blarigan EL, Fuchs CS, Niedzwiecki D, et al. Marine ω-3 polyunsaturated fatty acid and fish intake after colon cancer diagnosis and survival: CALGB 89803 (Alliance). Cancer Epidemiol Bio-markers Prev 2018; 27(4):438-445. doi: http://dx.doi.org/10.1158/1055-9965.EPI-17-068910.1158/1055-9965.EPI-17-0689593938029358223 Search in Google Scholar

80. Yu J, Liu L, Zhang Y, Wei J, Yang F. Effects of omega-3 fatty acids on patients undergoing surgery for gastrointestinal malignancy: a systematic review and meta-analysis. BMC Cancer 2017; 17(1):271. Published 2017 Apr 14. doi: http://dx.doi.org/10.1186/s12885-017-3248-y Search in Google Scholar

81. Park JM, Jeong M, Kim EH, Han YM, Kwon SH, Hahm KB. Omega-3 polyunsaturated fatty acids intake to regulate helicobacter pylori-associated gastric diseases as nonantimicrobial dietary approach. Biomed Res Int 2015; 2015:712363. doi: http://dx.doi.org/10.1155/2015/71236310.1155/2015/712363453858726339635 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo