[1. Centre for Disease Control and Prevention. Fungal Diseases. www.cdc.gov/fungal/global/index.html]Search in Google Scholar
[2. Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases – estimate precision. J Fungi 2017; 3(4):57. doi: http://dx.doi.org/10.3390/jof3040057]Abierto DOISearch in Google Scholar
[3. Vallabhaneni S, Cleveland AA, Farley MM. Epidemiology and risk factors for echinocandin nonsusceptible Candida glabrata bloodstream infections: data from a large multisite population-based candidemia surveillance program, 2008–2014. Open Forum Infect Dis 2015; 2(4):ofv163. doi: http://dx.doi.org/10.1093/ofid/ofv163]Abierto DOISearch in Google Scholar
[4. Verweij PE, Chowdhary A, Melchers WJ, Meis JF. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis 2016; 62(3):362-368. http://dx.doi.org/10.1093/cid/civ88510.1093/cid/civ885]Search in Google Scholar
[5. Rivero-Menendez O, Alastruey-Izquierdo A, Mellado E, Cuenca-Estrella M. Triazole resistance in Aspergillus spp.: a worldwide problem? J Fungi 2016; 2(3):21. doi: http://dx.doi.org/10.3390/jof2030021]Abierto DOISearch in Google Scholar
[6. Bhalodia NR, ShuklaVJ. Antibacterial and antifungal activities from leaf extracts of Cassia fistula L.: An ethnomedicinal plant. J Adv Pharm Technol Res 2011; 2(2):104-109. doi: 10.4103/2231-4040. doi: http://dx.doi.org/10.4103/2231-4040.82956.]Abierto DOISearch in Google Scholar
[7. Szabo M, Radu D, Gavrilas S, Chambre D, Iditoiu C. Antioxidant and antimicrobial properties of selected spice extracts. Int J Food Prop 2010; 13(3):535–54. doi: http://dx.doi.org/10.1080/10942910802713149]Abierto DOISearch in Google Scholar
[8. Ndhlala AR, Kasiyamhuru A, Mupure C, Chitindingu K, Benhura MA, Muchuweti M. Phenolic composition of Flacourtia indica, Opuntia megacantha and Sclerocarya birrea, Food Chem 2007; 103(1):82-87. doi: http://dx.doi.org/10.1016/j.food-chem.2006.06.066]Abierto DOISearch in Google Scholar
[9. Wallace G, Fry SC. Phenolic components of the plant cell wall. Int Rev Cytol 1994; 151:229-267. doi: http://dx.doi.org/10.1016/S0074-7696(08)62634-0]Abierto DOISearch in Google Scholar
[10. Frankel EN, Kanner J, German JB, Parks E, Kinsella JE. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. The Lancet 1993; (341)8843:454-457. doi: http://dx.doi.org/10.1016/0140-6736(93)90206-V]Abierto DOISearch in Google Scholar
[11. Kuda T, Tsunekawa M, Goto H, Araki Y. Anti-oxidant properties of four edible algae harvested in the Noto Peninsula, Japan. J Food Comp Anal 2005; 18(7):625-633. doi: http://dx.doi.org/10.1016/j.jfca.2004.06.015]Abierto DOISearch in Google Scholar
[12. Sharma S, Stutzman JD, Kelloff GJ, Steele VE. Screening of potential chemopreventive agents using biochemical markers of carcinogenesis. Cancer Res 1994; 54(22):5848-5855. PMID: 7954413]Search in Google Scholar
[13. Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 2006; 97(4):654-660. doi: http://dx.doi.org/10.1016/j.food-chem.2005.04.028]Abierto DOISearch in Google Scholar
[14. Wong CC, Li HB, Cheng KW, Chen F.A. Systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 2006; 97(4):705-711. doi: http://dx.doi.org/10.1016/j.foodchem.2005.05.049]Abierto DOISearch in Google Scholar
[15. Rahiman S, Ahmad B, Tantry BA, Kumar A. Variation of antioxidant activity and phenolic content of some common home remedies with storage time. Afr J Tradit Complement Altern Med 2013; 10(1):124-127. doi: http://dx.doi.org/10.4314/ajtcam.v10i1.16]Abierto DOISearch in Google Scholar
[16. Aquino R, Morelli S, Lauro MR, Abdo S, Saija A, Tomaino A. Phenolic constituents and antioxidant activity peroxyl radical trapping capacity of human plasma. Anal Biochem 2001; 269: 39–44. doi: http://dx.doi.org/10.1021/np0101245]Abierto DOISearch in Google Scholar
[17. Bursal E, Koksal E, Gulcin I, Bilsel G, Goren AC. Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC–MS/MS. Food Res Int 2013; 51:66-74. doi: http://dx.doi.org/10.1080/10942912.2016.1168438]Abierto DOISearch in Google Scholar
[18. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45(4):493-496. PMID: 532570710.1093/ajcp/45.4_ts.493]Search in Google Scholar
[19. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard. 2nd ed. M27-A2 Vol. 22 No. 15.]Search in Google Scholar
[20. Espinel-Ingroff A, Colombo AL, Cordoba S, Dufresne PJ, Fuller J, Ghannoum M, et al. International evaluation of MIC distributions and epidemio-logical cutoff value (ECV) definitions for Fusarium species identified by molecular methods for the CLSI broth microdilution method. Antimicrob Agents Chemother 2016; 60:1079-1084. doi: http://dx.doi.org/10.1128/AAC.02456-15]Abierto DOISearch in Google Scholar
[21. Halasa R, Turecka K, Orlewska C, Werel W. Comparison of fluorescence optical respirometry and microbroth dilution methods for testing antimicrobial compounds. J Microbiol Methods 2014; 107:98-105. doi: http://dx.doi.org/10.1016/j.mimet.2014.09.008]Abierto DOISearch in Google Scholar
[22. Bajpai M, Pande A, Tewari SK, Prakash D. Phenolic content and antioxidant activity of some food and medicinal plants. Int J Food Sci Nutr 2005; 56:287-291. doi: http://dx.doi.org/10.1080/09637480500146606]Abierto DOISearch in Google Scholar
[23. Saha S, Verma RJ. Antioxidant activity of polyphenolic extract of Terminalia chebula Retzius fruits. J Taibah Uni Sci 2018; 10(6):805-812, doi: http://dx.doi.org/10.1016/j.jtusci.2014.09.003]Abierto DOISearch in Google Scholar
[24. Yogesh K, Ali J. Antioxidant potential of thuja (Thuja occidentalis) cones and peach (Prunuspersia) seeds in raw chicken ground meat during refrigerated (4 ± 1°C) storage. J Food Sci Technol 2014; 51:1547-1553. doi: http://dx.doi.org/10.1007/s13197-012-0672-5]Abierto DOISearch in Google Scholar
[25. Hazarika N, Singh P, Hussain A, Das S. Phenolics content and antioxidant activity of crude extract of Oldenlandia corymbosa and Bryophyllum pinnatum. Res J Pharm Biol Chem Sci 2012; 3:297-303.]Search in Google Scholar
[26. Guler GO. Studies on antioxidant properties of the different solvent extracts and fatty acid composition of Hyoscyamus reticulatus L. J Food Biochem 2011; 36:532-538. doi: http://dx.doi.org/10.1111/j.1745-4514.2011.00564.x]Abierto DOISearch in Google Scholar
[27. Kuo PC, Damu AG, Cherng CY, Jeng JF, Teng CM, Lee EJ et al. Isolation of a natural antioxidant, dehydrozingerone from Zingiber officinale and synthesis of its analogues for recognition of effective antioxidant and antityrosinase agents. Arch Pharm Res 2005; 28:518-528. doi: http://dx.doi.org/10.1007/BF02977752]Abierto DOISearch in Google Scholar
[28. Sheng Z, Zhao J, Muhammad I, Zhang Y. Optimization of total phenolic content from Terminalia chebula Retz. fruits using response surface methodology and evaluation of their antioxidant activities. PLoS ONE. 2018; 13(8):e0202368. doi: http://dx.doi.org/10.1371/journal.pone.0202368]Abierto DOISearch in Google Scholar
[29. Yogesh K, Ali J. Antioxidant potential of thuja (Thuja occidentalis) cones and peach (Prunus persia) seeds in raw chicken ground meat during refrigerated (4±1°C) storage. J Food Sci Technol 2014; 51(8):1547-1553. doi: http://dx.doi.org/10.1007/s13197-012-0672-5]Abierto DOISearch in Google Scholar
[30. Hari Priya S, Prakasan N, Purushothaman J. Antioxidant activity, phenolic-flavonoid content and high-performance liquid chromatography profiling of three different variants of Syzygium cumini seeds: A comparative study. J Intercult Ethnopharmacol 2017; 6:107-114. doi: http://dx.doi.org/10.5455/jice.20161229055555]Abierto DOISearch in Google Scholar
[31. Abdulhamid A, Sani I, Kankiya IH, Fakai IM. Phytochemical screening, analgesic effect and anti-inflammatory activity of crude methanolic stem bark extract of Acacia nilotica (Linn.). Asian J Biol Sci 2019; 12(3): 450-456. doi: http://dx.doi.org/10.3923/ajbs.2019.450.456]Abierto DOISearch in Google Scholar
[32. Jeyaseelan EC, Jashothan PTJ. In vitro control of Staphylococcus aureus (NCTC 6571) and Escherichia coli (ATCC 25922) by Ricinus communis L. Asian Pac J Trop Biomed 2012; 2(10):717-721. doi: http://dx.doi.org/10.1016/S2221-1691(12)60216-0]Abierto DOISearch in Google Scholar
[33. Pontesa FC, Abdallaa VCP, Imatomia M, Fuentesa LFG, Gualtieria SCJ. Antifungal and antioxidant activities of mature leaves of Myrcia splendens (Sw.) DC. Braz J Biol 2019; 79(1):127-132. doi: http://dx.doi.org/10.1590/1519-6984.179829]Abierto DOISearch in Google Scholar
[34. Nassan MA, Mohamed EH, Abdelhafez S, Is-mail TA. Effect of clove and cinnamon extracts on experimental model of acute hematogenous pyelonephritis in albino rats: immunopathological and antimicrobial study. Int J Immunopathol Pharmacol 2015; 28:60-68. doi: http://dx.doi.org/10.1177/0394632015572075]Abierto DOISearch in Google Scholar
[35. Liu Q, Meng X, Li Y, Zhao CN, Tang GY, Li HB. Antibacterial and antifungal activities of spices. Int J Mol Sci 2017; 18:E1283. doi: http://dx.doi.org/10.3390/ijms18061283. PMID: 28621716]Abierto DOISearch in Google Scholar