Acceso abierto

A note on the nomenclatural representation of plant transcription factors, and deviations thereof

  
17 oct 2024

Cite
Descargar portada

Ailizati, A., Nagahage, I. S. P., Miyagi, A., Ishikawa, T., Kawai-Yamada, M., Demura, T., & Yamaguchi, M. (2022). VND-INTERACTING2 effectively inhibits transcriptional activities of VASCULAR-RELATED NAC-DOMAIN7 through a conserved sequence. Plant Biotechnology, 39(2), 147–153. https://doi.org/10.5511/plantbiotechnology.22.0122a Search in Google Scholar

Allan, A. C. (2019). Domestication: Colour and flavour joined by a shared transcription factor. Current Biology, 29(2), R57–R59. https://doi.org/10.1016/j.cub.2018.12.005 Search in Google Scholar

Alshareef, N. O., Otterbach, S. L., Allu, A. D., Woo, Y. H., de Werk, T., Kamranfar, I., Mueller-Roeber, B., Tester, M., Balazadeh, S., & Schmöckel, S. M. (2022). NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis. Scientific Reports, 12(1), 11264. https://doi.org/10.1038/s41598-022-14429-x Search in Google Scholar

Barco, B., & Clay, N. K. (2020). Hierarchical and dynamic regulation of defense-responsive specialized metabolism by WRKY and MYB transcription factors. Frontiers in Plant Science, 10, 1775. https://doi.org/10.3389/fpls.2019.01775 Search in Google Scholar

Blanc-Mathieu, R., Dumas, R., Turchi, L., Lucas, J., & Parcy, F. (2024). Plant-TFClass: A structural classification for plant transcription factors. Trends in Plant Science, 29(1), 40–51. https://doi.org/10.1016/j.tplants.2023.06.023 Search in Google Scholar

Brian, L., Warren, B., McAtee, P., Rodrigues, J., Nieuwenhuizen, N., Pasha, A., David, K. M., Richardson, A., Provart, N. J., Allan, A. C., Varkonyi-Gasic, E., & Schaffer, R. J. (2021). A gene expression atlas for kiwifruit (Actinidia chinensis) and network analysis of transcription factors. BMC Plant Biology, 21(1), 121. https://doi.org/10.1186/s12870-021-02894-x Search in Google Scholar

Butelli, E., Licciardello, C., Ramadugu, C., Durand-Hulak, M., Celant, A., Reforgiato Recupero, G., Froelicher, Y., & Martin, C. (2019). Noemi controls production of flavonoid pigments and fruit acidity and illustrates the domestication routes of modern citrus varieties. Current Biology, 29(1), 158–164.e2. https://doi.org/10.1016/j.cub.2018.11.040 Search in Google Scholar

Chow, C. N., Yang, C. W., Wu, N. Y., Wang, H. T., Tseng, K. C., Chiu, Y. H., Lee, T. Y., & Chang, W. C. (2024). PlantPAN 4.0: updated database for identifying conserved non-coding sequences and exploring dynamic transcriptional regulation in plant promoters. Nucleic Acids Research, 52(D1), D1569–D1578. https://doi.org/10.1093/nar/gkad945 Search in Google Scholar

Dang, X., Zhang, B., Li, C., & Nagawa, S. (2022). FvNST1b NAC protein induces secondary cell wall formation in strawberry. International Journal of Molecular Sciences, 23(21), 13212. https://doi.org/10.3390/ijms232113212 Search in Google Scholar

Gong, X., Zhao, L-Y., Song, X-F., Lin, Z-K., Gu, B-J., Yan, J-X., Zhang, S-L., Tao, S-T., & Huang, X-S. (2019). Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri). BMC Plant Biology, 19(1), 161. https://doi.org/10.1186/s12870-019-1760-8 Search in Google Scholar

Gray, J., Bevan, M., Brutnell, T., Buell, C. R., Cone, K., Hake, S., Jackson, D., Kellogg, E., Lawrence, C., McCouch, S., Mockler, T., Moose, S., Paterson, A., Peterson, T., Rokshar, D., Souza, G. M., Springer, N., Stein, N., Timmermans, M., Wang, G. L., & Grotewold, E. (2009). A recommendation for naming transcription factor proteins in the grasses. Plant Physiology, 149(1), 4–6. https://doi.org/10.1104/pp.108.128504 Search in Google Scholar

Hartmann, A., Berkowitz, O., Whelan, J., & Narsai, R. (2022). Cross-species transcriptomic analyses reveals common and opposite responses in Arabidopsis, rice and barley following oxidative stress and hormone treatment. BMC Plant Biology, 22(1), 62. https://doi.org/10.1186/s12870-021-03406-7 Search in Google Scholar

Hetz, C., Zhang, K. & Kaufman, R.J. (2020). Mechanisms, regulation and functions of the unfolded protein response. Nature Reviews Molecular Cell Biology, 21, 421–438. https://doi.org/10.1038/s41580-020-0250-z Search in Google Scholar

Hrmova, M., & Hussain, S.S. (2021). Plant transcription factors involved in drought and associated stresses. International Journal of Molecular Sciences, 22(11), 5662. https://doi.org/10.3390/ijms22115662 Search in Google Scholar

Hu, X-L., Xie, F-F., Liang, W-W., Liang, Y-H., Zhang, Z-K., Zhao, J-T., Hu, G-B., & Qin, Y-H. (2022). HuNAC20 and HuNAC25, two novel NAC genes from pitaya, confer cold tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences, 23(4), 2189. https://doi.org/10.3390/ijms23042189 Search in Google Scholar

Jan, S. U., Jamil, M., Bhatti, M. F., & Gul, A. (2019). Hallmark attributes of plant transcription factors and potentials of WRKY, MYB and NAC in abiotic stresses. In: Hasanuzzaman, M., Nahar, K., Fujita, M., Oku, H., Tofazzal, M. I. (eds.) Approaches for Enhancing Abiotic Stress Tolerance in Plants, CRC Press, Boca Raton, pp. 441–458. Search in Google Scholar

Karppinen, K., Lafferty, D. J., Albert, N. W., Mikkola, N., McGhie, T., Allan, A. C., Afzal, B. M., Häggman, H., Espley, R. V., & Jaakola, L. (2021). MYBA and MYBPA transcription factors co-regulate anthocyanin biosynthesis in blue-coloured berries. New Phytologist, 232(3), 1350–1367. https://doi.org/10.1111/nph.17669 Search in Google Scholar

Lai, X., Chahtane, H., Martin-Arevalillo, R., Zubieta, C., & Parcy, F. (2020). Contrasted evolutionary trajectories of plant transcription factors. Current Opinion in Plant Biology, 54, 101–107. https://doi.org/10.1016/j.pbi.2020.03.002 Search in Google Scholar

Li, F., Shan, Y., Wang, H., Jiang, G., Ding, X., Liang, H., Wang, C., Kong, X., Xie, L., & Jiang, Y. (2023). A NAC transcriptional factor BrNAC029 is involved in cytokinin-delayed leaf senescence in postharvest Chinese flowering cabbage. Food Chemistry, 404(Pt B), 134657. https://doi.org/10.1016/j.foodchem.2022.134657 Search in Google Scholar

Li, P-T., Chai, Z., Lin, P-P., Huang, C-H., Huang, G-Q., Xu, L-N., Deng, Z-H., Zhang, M-Q., Zhang, Y., & Zhao, X-W. (2020). Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneum L.). BMC Genomics, 21(1), 685. https://doi.org/10.1186/s12864-020-07076-x Search in Google Scholar

Li, Q., Zhou, L-Y., Li, Y-H., Zhang, D-P., & Gao, Y. (2021). Plant NIGT1/HRS1/HHO transcription factors: Key regulators with multiple roles in plant growth, development, and stress responses. International Journal of Molecular Sciences, 22(16), 8685. https://doi.org/10.3390/ijms22168685 Search in Google Scholar

Li, X., Wang, Q., Guo, C., Sun, J., Li, Z., Wang, Y., Yang, A., Pu, W., Guo, Y., Gao, J., & Wen, L. (2022). NtNAC053, a novel NAC transcription factor, confers drought and salt tolerances in tobacco. Frontiers in Plant Science, 13, 817106. https://doi.org/10.3389/fpls.2022.817106 Search in Google Scholar

Liu, X., Zong, X., Wu, X., Liu, H., Han, J., Yao, Z., Ren, Y., Ma, L., Wang, B., & Zhang, H. (2022). Ectopic expression of NAC transcription factor HaNAC3 from Haloxylon ammodendron increased abiotic stress resistance in tobacco. Planta, 256(6), 105. https://doi.org/10.1007/s00425-022-04021-y Search in Google Scholar

Ma, W-H., Kang, X., Liu, P., She, K-X., Zhang, Y-Y., Lin, X-R., Li, B., & Chen, Z-Z. (2022). The NAC-like transcription factor CsNAC7 positively regulates the caffeine biosynthesis-related gene yhNMT1 in Camellia sinensis. Horticulture Research, 9, uhab046. https://doi.org/10.1093/hr/uhab046 Search in Google Scholar

Mao, H., Li, S-M., Chen, B., Jian, C., Mei, F-M., Zhang, Y-F., Li, F-F., Chen, N., Li, T., Du, L-Y., Ding, L., Wang, Z-X., Cheng, X-X., Wang, X-J., & Kang, Z-S. (2022). Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Molecular Plant, 15(2), 276–292. https://doi.org/10.1016/j.molp.2021.11.007 Search in Google Scholar

Meng, L., Yang, H., Xiang, L., Wang, Y., & Chan, Z. (2022). NAC transcription factor TgNAP promotes tulip petal senescence. Plant Physiology, 190(3), 1960–1977. https://doi.org/10.1093/plphys/kiac351 Search in Google Scholar

Mijiti, M., Wang, Y., Wang, L., & Habuding, X. (2022). Tamarix hispida NAC transcription factor ThNAC4 [sic] confers salt and drought stress tolerance to transgenic Tamarix and Arabidopsis. Plants, 11(19), 2647. https://doi.org/10.3390/plants11192647 Search in Google Scholar

Ng, D.W.-K., Abeysinghe, J.K., & Kamali, M. (2018). Regulating the regulators: The control of transcription factors in plant defense signaling. International Journal of Molecular Sciences, 19(12), 3737. https://doi.org/10.3390/ijms19123737 Search in Google Scholar

Niu, X-L., & Fu, D-Q. (2022). The Roles of BLH transcription factors in plant development and environmental response. International Journal of Molecular Sciences, 23(7), 3731. https://doi.org/10.3390/ijms23073731 Search in Google Scholar

Peng, H., Phung, J., Stowe, E. C., Dhingra, A., & Neff, M. M. (2022). The NAC transcription factor ATAF2 promotes ethylene biosynthesis and response in Arabidopsis thaliana seedlings. FEBS Letters, 596(12), 1586–1599. https://doi.org/10.1002/1873-3468.14317 Search in Google Scholar

PlantRegMap (2024). PlantRegMap/PlantTFDB v5.0. Plant Transcription Factor Database. http://planttfdb.gaolab.org/help_famschema.php (last accessed: 25 July 2024) Search in Google Scholar

PubMed (2024). Plants NAC. https://pubmed.ncbi.nlm.nih.gov/?term=plants+NAC (last access: 25 July 2024) Search in Google Scholar

Romani, F., & Moreno, J. E. (2021). Molecular mechanisms involved in functional macroevolution of plant transcription factors. New Phytologist, 230(4), 1345–1353. https://doi.org/10.1111/nph.17161 Search in Google Scholar

Roy, D., & Sadanandom, A. (2021). SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Cellular and Molecular Life Sciences, 78(6), 2641–2664. https://doi.org/10.1007/s00018-020-03723-4 Search in Google Scholar

Salaün, C., Lepiniec, L., & Dubreucq, B. (2021). Genetic and molecular control of somatic embryogenesis. Plants, 10(7), 1467. https://doi.org/10.3390/plants10071467 Search in Google Scholar

Tao, Y., Wan, J. X., Liu, Y. S., Yang, X. Z., Shen, R. F., & Zhu, X. F. (2022). The NAC transcription factor ANAC017 regulates aluminum tolerance by regulating the cell wall-modifying genes. Plant Physiology, 189(4), 2517–2534. https://doi.org/10.1093/plphys/kiac197 Search in Google Scholar

Teixeira da Silva, J. A. (2016a). In defense of the use of italic for Latin binomial plant names. Polish Botanical Journal, 61(1), 1–6. https://doi.org/10.1515/pbj-2016-0014 Search in Google Scholar

Teixeira da Silva, J. A. (2016b). An error is an error… is an erratum. The ethics of not correcting errors in the science literature. Publishing Research Quarterly, 32(3), 220–226. https://doi.org/10.1007/s12109-016-9469-0 Search in Google Scholar

Teixeira da Silva, J. A. (2020). Chinese names in the biomedical literature: Suggested bibliometric standardization. Publishing Research Quarterly, 36(2), 254–257. https://doi.org/10.1007/s12109-020-09725-1 Search in Google Scholar

Teixeira da Silva, J. A. (2023). Is the validity, credibility and reliability of literature indexed in PubMed at risk? Medical Journal Armed Forces India, 79(5), 601–602. https://doi.org/10.1016/j.mjafi.2021.03.009 Search in Google Scholar

Teixeira da Silva, J. A. (2022). A synthesis of the formats for correcting erroneous and fraudulent academic literature, and associated challenges. Journal for General Philosophy of Science, 53(4), 583–599. https://doi.org/10.1007/s10838-022-09607-4 Search in Google Scholar

Teixeira da Silva, J. A., Bornemann-Cimenti, H., Daly, T., & Türp, J. C. (2024). Beyond disclaimers: The need for a curation-based model of PubMed. Current Medical Research & Opinion, 40(6), 1039–1045. https://doi.org/10.1080/03007995.2024.2350612 Search in Google Scholar

Teixeira da Silva, J. A., & Nazarovets, S. (2022). Publication history: A double DOI-based method to store and/or monitor information about published and corrected academic literature. Journal of Scholarly Publishing, 53(2), 85–108. https://doi.org/10.3138/jsp.53.2.2017-0017 Search in Google Scholar

Tian, F., Yang, D-C., Meng, Y-Q., Jin, J-P., & Gao, G. (2020). PlantRegMap: Charting functional regulatory maps in plants. Nucleic Acids Research, 48(D1), D1104–D1113. https://doi.org/10.1093/nar/gkz1020 Search in Google Scholar

Valoroso, M. C., Lucibelli, F., & Aceto, S. (2022). Orchid NAC transcription factors: A focused analysis of CUPULIFORMIS genes. Genes, 13(12), 2293. https://doi.org/10.3390/genes13122293 Search in Google Scholar

Vargas-Hernández, B. Y., Núñez-Muñoz, L., Calderón-Pérez, B., Xoconostle-Cázares, B., & Ruiz-Medrano, R. (2022). The NAC transcription factor ANAC087 [sic] induces aerial rosette development and leaf senescence in Arabidopsis. Frontiers in Plant Science, 13, 818107. https://doi.org/10.3389/fpls.2022.818107 Search in Google Scholar

Wang, M., Ren, L. T., Wei, X. Y., Ling, Y. M., Gu, H. T., Wang, S. S., Ma, X. F., & Kong, G. C. (2022). NAC transcription factor TwNAC01 [sic] positively regulates drought stress responses in Arabidopsis and Triticale. Frontiers in Plant Science, 13, 877016. https://doi.org/10.3389/fpls.2022.877016 Search in Google Scholar

Wang, P-T., Xu, X., Tang, Z., Zhang, W-W., Huang, X-Y., & Zhao, F-J. (2018). OsWRKY28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice. Frontiers in Plant Science, 9, 1330. https://doi.org/10.3389/fpls.2018.01330 Search in Google Scholar

Wang, X-P., Niu, Y-L., & Zheng, Y. (2021). Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences, 22(11), 6125. https://doi.org/10.3390/ijms22116125 Search in Google Scholar

Wang, Y., Cui, Y., Liu, B., Wang, Y., Sun, S., Wang, J., Tan, M., Yan, H., & Zhang, Y. (2022). Lilium pumilum stress-responsive NAC transcription factor LpNAC17 [sic] enhances salt stress tolerance in tobacco. Frontiers in Plant Science, 13, 993841. https://doi.org/10.3389/fpls.2022.993841 Search in Google Scholar

Wani, S. H., Anand, S., Singh, B., Bohra, A., & Joshi, R. (2021). WRKY transcription factors and plant defense responses: Latest discoveries and future prospects. Plant Cell Reports, 40(7), 1071–1085. https://doi.org/10.1007/s00299-021-02691-8 Search in Google Scholar

Xiao, R-X., Zhang, C., Guo, X-R., Li, H., & Lu, H. (2021). MYB transcription factors and its regulation in secondary cell wall formation and lignin biosynthesis during xylem development. International Journal of Molecular Sciences, 22(7), 3560. https://doi.org/10.3390/ijms22073560 Search in Google Scholar

Xu, P-P., Ma, W., Hu, J-B., & Cai, W-M. (2022). The nitrateinducible NAC transcription factor NAC056 controls nitrate assimilation and promotes lateral root growth in Arabidopsis thaliana. PLoS Genetics, 18(3), e1010090. https://doi.org/10.1371/journal.pgen.1010090 Search in Google Scholar

Yang, C., Huang, Y., Lv, P., Antwi-Boasiako, A., Begum, N., Zhao, T., & Zhao, J. (2022). NAC transcription factor GmNAC12 [sic] improved drought stress tolerance in soybean. International Journal of Molecular Sciences, 23(19), 12029. https://doi.org/10.3390/ijms231912029 Search in Google Scholar

Yang, Y-H., Liu, X., Zhang, W-B., Qian, Q., Zhou, L-M., Liu, S., Li, Y-G., & Hou, X-L. (2021). Stress response proteins NRP1 and NRP2 are pro-survival factors that inhibit cell death during ER stress. Plant Physiology, 187(3), 1414–1427. https://doi.org/10.1093/plphys/kiab335 Search in Google Scholar

Yoon, Y-D., Seo, D-H., Shin, H-Y., Kim, H-J., Kim, C-M., & Jang, G-P. (2020). The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy, 10(6), 788. https://doi.org/10.3390/agronomy10060788 Search in Google Scholar

Yu, C-Y., Cho, Y., Sharma, O., & Kanehara, K. (2022). What’s unique? The unfolded protein response in plants. Journal of Experimental Botany, 73(5), 1268–1276. https://doi.org/10.1093/jxb/erab513 Search in Google Scholar

Yu, G., Xie, Z., Lei, S., Li, H., Xu, B., & Huang, B. (2022). The NAC factor LpNAL delays leaf senescence by repressing two chlorophyll catabolic genes in perennial ryegrass. Plant Physiology, 189(2), 595–610. https://doi.org/10.1093/plphys/kiac070 Search in Google Scholar

Zhang, J-C., Mei, H., Lu, H-J., Chen, R., Hu, Y., & Zhang, T-Z. (2022). Transcriptome time-course analysis in the whole period of cotton fiber development. Frontiers in Plant Science, 13, 864529. https://doi.org/10.3389/fpls.2022.864529 Search in Google Scholar

Zhang, X., Li, L., Lang, Z., Li, D., He, Y., Zhao, Y., Tao, H., Wei, J., Li, Q., & Hong, G. (2022). Genome-wide characterization of NAC transcription factors in Camellia sinensis and the involvement of CsNAC28 in drought tolerance. Frontiers in Plant Science, 13, 1065261. https://doi.org/10.3389/fpls.2022.1065261 Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Ciencias de la vida, Genética, Biotecnología, Bioinformática, Ciencias de la vida, otros