1. bookVolumen 30 (2022): Edición 2 (May 2022)
Detalles de la revista
License
Formato
Revista
eISSN
1844-0835
Primera edición
17 May 2013
Calendario de la edición
1 tiempo por año
Idiomas
Inglés
access type Acceso abierto

Laplacian energy and first Zagreb index of Laplacian integral graphs

Publicado en línea: 02 Jun 2022
Volumen & Edición: Volumen 30 (2022) - Edición 2 (May 2022)
Páginas: 133 - 160
Recibido: 13 Jul 2021
Aceptado: 10 Nov 2021
Detalles de la revista
License
Formato
Revista
eISSN
1844-0835
Primera edición
17 May 2013
Calendario de la edición
1 tiempo por año
Idiomas
Inglés
Abstract

The set Si,n = {0, 1, 2, …, i − 1, i + 1, …, n − 1, n}, 1 ⩽ in, is called Laplacian realizable if there exists a simple connected undirected graph whose Laplacian spectrum is Si,n. The existence of such graphs was established by S. Fallat et all. In the present paper, we find the Laplacian energy and first Zagreb index of graphs whose Laplacian spectrum is Si,n.

Keywords

MSC 2010

[1] de Abreu NMM, Vinagre CTM, Bonifácio AS, Gutman I. The Laplacian energy of some Laplacian integral graphs. MATCH Communications in Mathematical and in Computer Chemistry 2008; 60 (2): 447–460. Search in Google Scholar

[2] Ashrafi AR, Došlić T, Hamzeh A. The Zagreb coindices of graph operations. Discrete Applied Mathematics 2010; 158 (15): 1571–1578. doi: 10.1016/j.dam.2010.05.017.10.1016/j.dam.2010.05.017 Search in Google Scholar

[3] Balaban AT, Motoc I, Bonchev D, Mekenyan O. Topological indices for structure-activity correlations. Topics in Current Chemistry 1983; 114: 21–55. doi: 10.1007/BFB0111212.10.1007/BFb0111212 Search in Google Scholar

[4] Balakrishnan R. The energy of a graph. Linear Algebra and its Applications 2004; 387: 287–295. doi: 10.1016/j.laa.2004.02.038.10.1016/j.laa.2004.02.038 Search in Google Scholar

[5] Balakrishnan R, Kanna R. A textbook of graph theory. Springer Science & Business Media, 2012. doi: org/10.1007/978-1-4614-4529-6. Search in Google Scholar

[6] Cvetković D, Rowlinson P, Simić S. An introduction to the theory of graph spectra. London Mathematical Society Student Texts 2010; 75: xii+364. doi: 10.1017/CBO9780511801518.10.1017/CBO9780511801518 Search in Google Scholar

[7] Das KC. On comparing Zagreb indices of graphs. MATCH Communications in Mathematical and in Computer Chemistry 2010; 63 (2): 433–440. Search in Google Scholar

[8] Das KC, Gutman I. Some properties of the second Zagreb index. MATCH Communications in Mathematical and in Computer Chemistry 2004; 52 (1): 103–112. Search in Google Scholar

[9] Das KC, Gutman I, Zhou B. New upper bounds on Zagreb indices. Journal of Mathematical Chemistry 2009; 46 (2): 514–521.10.1007/s10910-008-9475-3 Search in Google Scholar

[10] Das KC, Lee SG, Cheon GS. On the conjecture for certain Laplacian integral spectrum of graphs. Journal of Graph Theory 2010; 63 (2): 106–113. doi: 10.1002/jgt.20412.10.1002/jgt.20412 Search in Google Scholar

[11] Das KC, Mojallal SA. On Laplacian energy of graphs. Discrete Mathematics 2014; 325: 52–64.doi: 10.1016/j.disc.2014.02.017.10.1016/j.disc.2014.02.017 Search in Google Scholar

[12] Das KC, Mojallal SA, Gutman I. On Laplacian energy in terms of graph invariants. Applied Mathematics and Computation 2015; 268: 83–92. doi: 10.1016/j.amc.2015.06.06410.1016/j.amc.2015.06.064 Search in Google Scholar

[13] Das KC, Mojallal SA, Gutman I. On energy and Laplacian energy of bipartite graphs. Applied Mathematics and Computation 2016; 273: 759–766. doi: 10.1016/j.amc.2015.10.047.10.1016/j.amc.2015.10.047 Search in Google Scholar

[14] Del-Vecchio RR, Pereira GB, Vinagre C.T.M. Constructing pairs of Laplacian equienergetic threshold graphs. Matemtica Contempornea 2016; 44 :1–10. Search in Google Scholar

[15] Deng B, Li X. More on L-borderenergetic graphs. MATCH Communications in Mathematical and in Computer Chemistry 2017; 77 (1): 115–127. Search in Google Scholar

[16] Deng B, Li X. On L-borderenergetic graphs with maximum degree at most 4. MATCH Communications in Mathematical and in Computer Chemistry 2018; 79(2): 303–310. Search in Google Scholar

[17] Fallat SM, Kirkland SJ, Molitierno JJ, Neumann M. On graphs whose Laplacian matrices have distinct integer eigenvalues. Journal of Graph Theory 2005; 50 (2): 162–174. doi: 10.1002/jgt.20102.10.1002/jgt.20102 Search in Google Scholar

[18] Fritscher E, Hoppen C, Trevisan V. Unicyclic graphs with equal Laplacian energy. Linear and Multilinear Algebra 2014; 62 (2): 180–194. doi: 10.1080/03081087.2013.766395.10.1080/03081087.2013.766395 Search in Google Scholar

[19] Ganie HA, Shariefuddin P, Iványi A. Energy, Laplacian energy of double graphs and new families of equienergetic graphs. Acta Universitatis Sapientiae, Informatica 2014; 6(1): 89–116. doi: 10.2478/ausi-2014-0020.10.2478/ausi-2014-0020 Search in Google Scholar

[20] Gibbs RA. Self-complementary graphs. Journal of Combinatorial Theory, Series B 1974; 16: 106–123. doi: 10.1016/0095-8956(74)90053-7.10.1016/0095-8956(74)90053-7 Search in Google Scholar

[21] Goldberger A, Neumann M. On a conjecture on a Laplacian matrix with distinct integral spectrum. Journal of Graph Theory 2013; 72 (2): 178–208. doi: 10.1002/jgt.21638.10.1002/jgt.21638 Search in Google Scholar

[22] Gong S, Li X, Xu G, Gutman I, Furtula B. Borderenergetic graphs. MATCH Communications in Mathematical and in Computer Chemistry 2015; 74 (2): 321–332. Search in Google Scholar

[23] Gutman I. The energy of a graphs. Berichte Mathematisch- Statistische Sektion Forschungszentrum Graz 1978; 103: 1–22. Search in Google Scholar

[24] Gutman I. The energy of a graph: old and new results. Algebraic Combinatorics and Application 2001; 196–211. doi: 10.1007/978-3-642-59448-9_13.10.1007/978-3-642-59448-9_13 Search in Google Scholar

[25] Gutman I, de Abreu N.M.M, Vinagre C.T.M, Bonifácio AS, Radenković S. Relation between energy and Laplacian energy. MATCH Communications in Mathematical and in Computer Chemistry 2008; 59 (2): 343–354. Search in Google Scholar

[26] Gutman I, Das KC. The first Zagreb index 30 years after. MATCH Communications in Mathematical and in Computer Chemistry 2004; 50: 83–92. Search in Google Scholar

[27] Gutman I, Ruščić B, Trinajstić N, Wilcox CF. Graph theory and molecular orbitals. XII. Acyclic polyenes. The Journal of Chemical Physics 1975; 62 (9): 3399–3405. doi: 10.1063/1.430994.10.1063/1.430994 Search in Google Scholar

[28] Gutman I, Trinajstić N. Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chemical Physics Letters 1972; 17 (4): 535–538.doi: 10.1016/0009-2614(72)85099-1.10.1016/0009-2614(72)85099-1 Search in Google Scholar

[29] Gutman I, Zhou B. Laplacian energy of a graph. Linear Algebra and its Applications 2006; 414 (1):29–37. doi: 10.1016/j.laa.2005.09.008.10.1016/j.laa.2005.09.008 Search in Google Scholar

[30] Horoldagva B, Das KC. On comparing Zagreb indices of graphs. Hacettepe Journal of Mathematics and Statistics 2012; 41 (2): 223-230. Search in Google Scholar

[31] Hosamani M, Basavanagoud B. New upper bounds for the first Zagreb index. MATCH Communications in Mathematical and in Computer Chemistry 2015; 74(1):97–101. Search in Google Scholar

[32] Ilić A, Stevanović D. On comparing Zagreb indices. MATCH Communications in Mathematical and in Computer Chemistry 2009;62 (4): 681–687. Search in Google Scholar

[33] Kel’mans AK. The number of trees of a graph I. Automat. Remote Control 1966; 26: 2118–2129 (1966). Search in Google Scholar

[34] Khalifeh MH, Yousefi-Azari H, Ashrafi A. The first and second Zagreb indices of some graph operations. Discrete applied mathematics 2009; 157 (4): 804–811. doi: 10.1016/j.dam.2008.06.015.10.1016/j.dam.2008.06.015 Search in Google Scholar

[35] Liu J, Liu B, Radenković S, Gutman I. Minimal LEL-equienergetic graphs. MATCH Communications in Mathematical and in Computer Chemistry 2009; 61: 471–478. Search in Google Scholar

[36] Merris R. Laplacian matrices of graphs: a survey. Linear Algebra and its Applications 1994; 197–198: 143–176. doi: 10.1016/0024-3795(94)90486-3.10.1016/0024-3795(94)90486-3 Search in Google Scholar

[37] Merris R. Degree maximal graphs are Laplacian integral. Linear Algebra and its Applications 1994; 199: 381–389. doi: 10.1016/0024-3795(94)90361-1.10.1016/0024-3795(94)90361-1 Search in Google Scholar

[38] Merris R. Graph theory. Wiley-Interscience Series in Discrete Mathematics and Optimization 2001; 50 (2): xiv+237. doi: 10.1002/9781118033043.scard.10.1002/9781118033043.scard Search in Google Scholar

[39] Milovanović IZ, Matejić M, Milošević P, Milovanović E, Ali A. A note on some lower bounds of the Laplacian energy of a graph. Transactions on Combinatorics 2019; 8 (2): 13–19. Search in Google Scholar

[40] Mohar B. The Laplacian spectrum of graphs. Graph theory, combinatorics, and applications 1991; 2: 871–898. Search in Google Scholar

[41] Neumann M, Pati S. The Laplacian spectra of graphs with a tree structure. Linear and Multilinear Algebra 2009; 57 (3): 267–291. doi: 10.1080/03081080701688101.10.1080/03081080701688101 Search in Google Scholar

[42] Nikolić S, Kovačević G, Miličević A, Trinajstić N. The Zagreb indices 30 years after. Croatica Chemica Acta 2003; 76 (2): 113–124. Search in Google Scholar

[43] Robbiano M, Martins EA, Jiménez R, San Martín B. Upper bounds on the Laplacian energy of some graphs. MATCH Communications in Mathematical and in Computer Chemistry 2010; 64 (1): 97–110. Search in Google Scholar

[44] Stevanović D. Large sets of noncospectral graphs with equal Laplacian energy. MATCH Communications in Mathematical and in Computer Chemistry 2009; 61 (2): 463. Search in Google Scholar

[45] Stevanović D, Stanković I, Milošević M. More on the relation between energy and Laplacian energy of graphs. MATCH Communications in Mathematical and in Computer Chemistry 2009; 61 (2): 395–401. Search in Google Scholar

[46] Su G, Xiong L, Xu L. The Nordhaus–Gaddum-type inequalities for the Zagreb index and co-index of graphs. Applied Mathematics Letters 2012; 25 (11): 1701–1707.10.1016/j.aml.2012.01.041 Search in Google Scholar

[47] Tao Q, Hou Y. A computer search for the L-borderenergetic graph. MATCH Communications in Mathematical and in Computer Chemistry 2017; 77 (3): 595–606. Search in Google Scholar

[48] Todeschini R, Consonni V. Handbook of Molecular Descriptors. John Wiley & Son, 2008.10.1007/978-1-4020-9783-6_3 Search in Google Scholar

[49] Tura F. L-borderenergetic graphs and normalized Laplacian energy. MATCH Communications in Mathematical and in Computer Chemistry 2017; 77 (3): 617–624. Search in Google Scholar

[50] Tura F. L-borderenergetic graphs. MATCH Communications in Mathematical and in Computer Chemistry 2017; 77: 37–44. Search in Google Scholar

[51] Wang M, Hua H. More on Zagreb coindices of composite graphs. International Mathematical Forum 2012; 7: 669–673. Search in Google Scholar

[52] Zhou B. More on energy and Laplacian energy. MATCH Communications in Mathematical and in Computer Chemistry 2010; 64 (1): 75–84. Search in Google Scholar

[53] Zhou B, Gutman I, Aleksić T. A note on Laplacian energy of graphs. MATCH Communications in Mathematical and in Computer Chemistry 2008; 60 (2): 441–446. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo