1. bookVolumen 26 (2022): Edición 1 (June 2022)
Detalles de la revista
Primera edición
30 Jul 2013
Calendario de la edición
2 veces al año
Acceso abierto

Influence of Bacillus Subtilis Fermentation on Content of Selected Macronutrients in Seeds and Beans

Publicado en línea: 09 Jul 2022
Volumen & Edición: Volumen 26 (2022) - Edición 1 (June 2022)
Páginas: 123 - 138
Recibido: 25 May 2022
Aceptado: 10 May 2022
Detalles de la revista
Primera edición
30 Jul 2013
Calendario de la edición
2 veces al año

In this study, five plant matrices (pea, mung bean, lentils, soy and sunflower) were fermented using Bacillus subtilis var. natto. Then the process influence on the content of fatty acids and proteins was evaluated, depending on the fermentation length. Fermentation was conducted for 144 hours in controlled conditions of temperature and relative humidity (37°C, 75%). Samples for tests were collected every 24 hours. Gas chromatography coupled with triple quadrupole tandem mass spectrometry (GC-MS/MS) was used to evaluate fatty acids content in fermented seeds. Their composition was expressed as a percentage of the total quantity of fatty acids. The protein content in plant matrices was analysed with the modified Bradford protein assay, using the TECAN apparatus with the i-Control software, of the wave length of ʎ=595 nm. Studies showed that the prolonged fermentation time influenced an increase of polyunsaturated fatty acids (PUFA) content in all studied seeds. Promising results were obtained for soy, sunflower, and lentil seeds, amounting to 3.6%; 68.7% and 67.7%, respectively. This proves that the process of seed fermentation can be effectively used to increase their nutritional value.


1. Anwar, F., Latif, S,. Przybylski, R,. Sultana, B. & Ashraf, M. (2007) Chemical Composition and Antioxidant Activity of Seeds of Different Cultivars of Mungbean. Journal of Food Science. 72(7), 503-510. https://doi.org/10.1111/j.1750-3841.2007.00462.x Search in Google Scholar

2. Baek, J.G., Shim, S.M., Kwon, D.Y., Choi, H.K., Lee, C.H. & Kim, Y.S. (2010) Metabolite profiling of Cheonggukjang, a fermented soybean paste, inoculated with various Bacillus strains during fermentation. Bioscience Biotechnology Biochemistry. 74(9), 1860-8. doi: 10.1271/bbb.100269. Epub 2010 Sep 7. PMID: 20834151. Abierto DOISearch in Google Scholar

3. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-54. doi: 10.1006/abio.1976.9999. PMID: 942051. Abierto DOISearch in Google Scholar

4. Çabuk, B., Nosworthy, M.G., Stone, A.K., Korber, D.R., Tanaka, T., House, J.D. & Nickerson, M.T. (2018) Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate. Food Technology and Biotechnology, 56(2):257-264. doi: 10.17113/ftb. Abierto DOISearch in Google Scholar

5. Chen, X,. Lu, Y,. Zhao, A,. Wu, Y,. Zhang, Y. & Yang, X. (2022) Quantitative analyses for several nutrients and volatile components during fermentation of soybean by Bacillus subtilis natto. Food Chemistry. 374. 131725. https://doi.org/10.1016/j.foodchem.2021.131725 Search in Google Scholar

6. Cho, K.M., Lim, H.-J., Kim, M.-S., Kim, D. S., Hwang, C. E., Nam, S. H., Joo, O. S., Lee, B. W., Kim, J. K., & Shin E.-C. (2017) Time course effects of fermentation on fatty acid and volatile compound profiles of Cheonggukjang using new soybean cultivars. Journal of Food and Drug Analysis, 25(3), 637-653. https://doi.org/10.1016/j.jfda.2016.07.006. Search in Google Scholar

7. Chu, J,. Zhao, H,. Lu, Z,. Lu, F,. Bie, X. & Zhang, C. (2019) Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto. Food Chemistry. 294. 79-86. https://doi.org/10.1016/j.foodchem.2019.05.035 Search in Google Scholar

8. Ciborowska, H. & Rudnicka, A. (2019) Dietetyka. Żywienie zdrowego i chorego człowieka. Wydawnictwo Lekarskie PZWL, Warszawa. ISBN 9788320048674. [in Polish]. Search in Google Scholar

9. Cuevas-Rodrıguez, E.O., MiIán-Carrillo, J., Mora-Escobedo, R., Cárdenas-Valenzuela, O.G., & Reyes-Moreno, C. (2004) Quality protein maize (Zea mays L.) tempeh flour through solid state fermentation process. LWT - Food Science and Technology, 37(1), 59-67. https://doi.org/10.1016/S0023-6438(03)00134-8 Search in Google Scholar

10. Dimidi, E., Cox, S.R. & Rossi, M. (2019) Whelan K. Fermented Foods: Definitions and Characteristics. Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients. 11(8): 1806. doi: 10.3390/nu11081806.672365631387262 Abierto DOISearch in Google Scholar

11. Frias, J., Song, Y.S., Martínez-Villaluenga, C., De Mejia, E.G. & Vidal-Valverde, C. (2008) Immunoreactivity and Amino Acid Content of Fermented Soybean Products. Journal of Agricultural and Food Chemistry. 56(1), 99-105. https://doi.org/10.1021/jf072177j.18072744 Search in Google Scholar

12. Food analysis (2016). Book: „Wybrane metody oznaczeń jakościowych i ilościowych składników żywności” Nogala-Kałucka M. (ed.): Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu Poznań. ISBN 978-83-7160-852-0. [In Polish] Search in Google Scholar

13. González-Pérez, S., & Vereijken, J. M. (2007) Sunflower proteins: Overview of their physicochemical, structural and functional properties. Journal of the Science of Food and Agriculture, 87(12), 2173-2191. https://doi.org/10.1002/jsfa.2971. Search in Google Scholar

14. Hoffman, J,R. & Falvo, M.J. (2004) Protein - Which is Best? Journal of Sports Science and Medicine, 3(3):118-130. Search in Google Scholar

15. Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., Feng, N. & Shen, Q. (2019) Mung Bean (Vigna radiata L.): Bioactive Polyphenols. Polysaccharides. Peptides. and Health Benefits. Nutrients, 11(6), 1238. https://doi.org/10.3390/nu11061238.662709531159173 Search in Google Scholar

16. Hunter, J.E., Zhang, J. & Kris-Etherton, P.M. (2010) Cardiovascular disease risk of dietary stearic acid compared with trans. other saturated. and unsaturated fatty acids: A systematic review. The American Journal of Clinical Nutrition. 91(1), 46-63. https://doi.org/10.3945/ajcn.2009.27661.19939984 Search in Google Scholar

17. Grela, E.R., Samolińska, W., Kiczorowska, B., Klebaniuk, R. & Kiczorowski P. (2017) Content of Minerals and Fatty Acids and Their Correlation with Phytochemical Compounds and Antioxidant Activity of Leguminous Seeds. Biological Trace Element Research, 180(2), 338-348. https://doi.org/10.1007/s12011-017-1005-3.566265828357649 Search in Google Scholar

18. Khattab, R.Y. & Arntfield, S.D. (2009) Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT - Food Science and Technology. 42(6). 1113-1118. https://doi.org/10.1016/j.lwt.2009.02.004. Search in Google Scholar

19. Khrisanapant, P., Kebede, B., Leong, S. & Oey I. (2019) A Comprehensive Characterisation of Volatile and Fatty Acid Profiles of Legume Seeds. Foods, 8(12), 651. https://doi.org/10.3390/foods8120651.696361031817745 Search in Google Scholar

20. Kim, J., Choi, J.N. John, K.M.M., Kusano, M., Oikawa, A., Saito, K. & Lee, C.H. (2012) GC–TOF-MS- and CE–TOF-MS-Based Metabolic Profiling of Cheonggukjang (Fast-Fermented Bean Paste) during Fermentation and Its Correlation with Metabolic Pathways. Journal of Agricultural and Food Chemistry, 60(38). 9746-9753. https://doi.org/10.1021/jf302833y.22913417 Search in Google Scholar

21. Li, L., Wang, Y. & Li, Y. (2019) Effects of substrate concentration. hydraulic retention time and headspace pressure on acid production of protein by anaerobic fermentation. Bioresource Technology, 283, 106-111. https://doi.org/10.1016/j.biortech.2019.03.027.30901582 Search in Google Scholar

22. Li, W. & Wang, T. (2021) Effect of solid-state fermentation with Bacillus subtilis lwo on the proteolysis and the antioxidative properties of chickpeas. International Journal of Food Microbiology, 338, 108988. https://doi.org/10.1016/j.ijfoodmicro.2020.108988.33267968 Search in Google Scholar

23. Ligenza, A., Jakubczyk, K.P., Kochman, J. & Janda, K. (2021) Potencjał prozdrowotny i skład mikrobiologiczny fermentowanego napoju tepache. Medycyna Ogólna i Nauki o Zdrowiu. 27(3) 272-276. doi:10.26444/monz/138713. [in Polish] Abierto DOISearch in Google Scholar

24. Marco, M.L., Heeney, D., Binda, S., Cifelli, C.J., Cotter, P.D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E.J. & Hutkins, R. (2017) Health benefits of fermented foods: microbiota and beyond. Current Opinion in Biotechnology, 44: 94-102. doi: 10.1016/j.copbio.2016.11.010. Epub 2016 Dec 18.27998788 Abierto DOISearch in Google Scholar

25. Melini, F., Melini, V., Luziatelli, F., Ficca, A.G., Ruzzi, M. (2019) Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review. Nutrients, 11(5), 1189. https://doi.org/10.3390/nu11051189.656712631137859 Search in Google Scholar

26. Mukhtar, H. & Haq, I. (2013) Comparative Evaluation of Agroindustrial Byproducts for the Production of Alkaline Protease by Wild and Mutant Strains of Bacillus subtilis in Submerged and Solid State Fermentation. The Scientific World Journal, 1-6. https://doi.org/10.1155/2013/538067.383332124294129 Search in Google Scholar

27. Niu, L.-Y., Jiang, S.-T. & Pan, L.-J. (2013) Preparation and evaluation of antioxidant activities of peptides obtained from defatted wheat germ by fermentation. Journal of Food Science and Technology. 50(1), 53,61. https://doi.org/10.1007/s13197-011-0318-z.355095824425887 Search in Google Scholar

28. Nowak, K & Żmudzińska-Żurek,B. (2008) Błonnik–niezbędne włókno roślinne. Przemysł Fermentacyjny i Owocowo-Warzywny, 7-8: 16-19. [in Polish] Search in Google Scholar

29. Panel on Macronutrients (2005). Panel on the Definition of Dietary Fiber. Subcommittee on Upper Reference Levels of Nutrients. Subcommittee on Interpretation and Uses of Dietary Reference Intakes. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Food and Nutrition Board. & Institute of Medicine. Dietary Reference Intakes for Energy. Carbohydrate. Fiber. Fat. Fatty Acids. Cholesterol. Protein. and Amino Acids. National Academies Press, pp 10490 https://doi.org/10.17226/10490. Search in Google Scholar

30. Pattee, H.E., Salunkhe, D.K., Sathe S.K., Reddy, N.R. & Ory R.L. (1983) Legume lipids. C R C Critical Reviews in Food Science and Nutrition, 17(2), 97-139. https://doi.org/10.1080/10408398209527345.6751699 Search in Google Scholar

31. Park, M.K., Cho. I.H., Lee, S., Choi, H.-K., Kwon, D.-Y. & Kim, Y.-S. (2010) Metabolite profiling of Cheonggukjang. a fermented soybean paste. during fermentation by gas chromatography-mass spectrometry and principal component analysis. Food Chemistry. 122(4), 1313-1319. https://doi.org/10.1016/j.foodchem.2010.03.095. Search in Google Scholar

32. Petraru, A., Ursachi, F. & Amariei, S. (2021) Nutritional Characteristics Assessment of Sunflower Seeds. Oil and Cake. Perspective of Using Sunflower Oilcakes as a Functional Ingredient. Plants. 10(11), 2487. https://doi.org/10.3390/plants10112487.861902734834848 Search in Google Scholar

33. Potocki, L., Baran, A., Oklejewicz, B., Szpyrka, E., Podbielska, M. & Schwarzbacherová, V. (2020) Synthetic Pesticides Used in Agricultural Production Promote Genetic Instability and Metabolic Variability in Candida spp. Genes, 11, 848. https://doi.org/10.3390/genes11080848.746377032722318 Search in Google Scholar

34. Pranoto, Y., Anggrahini, S. & Efendi, Z. (2013) Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Bioscience, 2, 46-52. https://doi.org/10.1016/j.fbio.2013.04.001. Search in Google Scholar

35. Rehman, I., Kerndt, C.C. & Botelho, S. (2021) Biochemistry. Tertiary Protein Structure. 2021 Sep 14. In: StatPearls, Treasure Island (FL): StatPearls Publishing; 2021 Jan–. PMID: 29262204 [accessed Januar 2021] Search in Google Scholar

36. Rogóż, J., Podbielska, M., Szpyrka, E. & Wnuk, M. (2021) Characteristics of Dietary Fatty Acids Isolated from Historic Dental Calculus of the 17th- and 18th-Century Inhabitants of the Subcarpathian Region (Poland). Molecules. 26(10), 2951. https://doi.org/10.3390/molecules26102951.815589134063539 Search in Google Scholar

37. Ruan, S., Luo, J., Li, Y., Wang, Y., Huang, S., Lu, F. & Ma, H. (2020) Ultrasound-assisted liquid-state fermentation of soybean meal with Bacillus subtilis: Effects on peptides content, ACE inhibitory activity and biomass, Process Biochemistry, 91, 73-82, https://doi.org/10.1016/j.procbio.2019.11.035. Search in Google Scholar

38. Rudzińska, M. & Przybylski, R. (2019) Rola tłuszczu w żywieniu człowieka. Medycyna Rodzinna, 22(4): 182-188. doi: 10.25121/MR.2019.22.4.182 [in Polish]. Abierto DOISearch in Google Scholar

39. Ruiz Sella, R., S.R.B.. Bueno. T.. de Oliveira. A.A.B.. Karp. S.G.. & Soccol. C.R. (2021) Bacillus subtilis natto as a potential probiotic in animal nutrition. Critical Reviews in Biotechnology, 41(3), 355–369. https://doi.org/10.1080/07388551.2020.1858019.33563053 Search in Google Scholar

40. Selected methods of food analysis (2003). Book: „Oznaczanie podstawowych składników substancji dodatkowych i zanieczyszczeń” Malecka M. (ed): Wydawnictwo Akademii Ekonomicznej w Poznaniu, Poznań 2003. ISBN 978-83-89224-65-1. [in Polish] Search in Google Scholar

41. Selhub, E.M., Logan, A.C. & Bested, A.C. (2014) Fermented foods. microbiota. and mental health: ancient practice meets nutritional psychiatry. Journal of Physiological Anthropology, 33(1), 2. doi:10.1186/1880-6805-33-2.390469424422720 Abierto DOISearch in Google Scholar

42. Shah, A.M., Memon, M.S., Memon, A.N., Ansari, A.W. & Arain, B.A. (2010) Analysis of Protein by Spectrophotometric and Computer Colour Based Intensity Method from Stem of Pea (Pisum sativm) at Different Stages. Pak. Journal of Environmental Analytical Chemistry, 11(2), 63-71. Search in Google Scholar

43. Shrestha, A., K., Dahal, N.R. & Ndungutse,V. (2013). Bacillus Fermentation of Soybean: A Review. Journal of Food Science and Technology Nepal, 6, 1-9. https://doi.org/10.3126/jfstn.v6i0.8252 Search in Google Scholar

44. Sin, I., de Jong, T., Mata-Cabana, A., Kudron, M., Zaini, M.A., Aprile F.A., Seinstra, R.I., Stroo, E., Prins, R.W., Martineau, C.N., Wang, H.H., Hogewerf, W., Steinhof, A., Wanker, E.E., Vendruscolo, M., Calkhoven, C.F., Reinke, V., Guryev, V. & Nollen E.A.A. (2017) Identification of an RNA Polymerase III RegulatorLinked to Disease-Associated Protein Aggregation, Molecular Cell 65, 1096-1108.10.1016/j.molcel.2017.02.022536437528306505 Search in Google Scholar

45. Słowik-Borowiec, M., Potocki, L., Oklejewicz, B., Broda, D., Podbielska, M. & Szpyrka, E. (2021) Preparation of Vitamin K2 Mk-7 in a Process of Fermentation of Different Seeds and Cereals by Bacteria Bacillus Subtilis. Acta Universitatis Cibiniensis. Series E: Food Technology, 25(1) 93-104. https://doi.org/10.2478/aucft-2021-0009. Search in Google Scholar

46. Swanson, D., Block, R. & Mousa, S.A. (2012) Omega-3 fatty acids EPA and DHA: health benefits throughout life. Advances in Nutrition, 3(1), 1-7. doi: 10.3945/an.111.000893. Epub 2012 Jan 5. PMID: 22332096; PMCID: PMC3262608.326260822332096 Abierto DOISearch in Google Scholar

47. Szpyrka, E., Broda, D., Oklejewicz, B., Podbielska, M., Slowik-Borowiec, M., Jagusztyn, B., Chrzanowski, G., Kus-Liskiewicz, M., Duda, M., Zuczek, J., Wnuk, M. & Lewinska, A. (2020) A Non-Vector Approach to Increase Lipid Levels in the Microalga Planktochlorella nurekis. Molecules, 25, 270. https://doi.org/10.3390/molecules25020270.702419531936538 Search in Google Scholar

48. Tao A., Afshar, R.K., Huang, J., Mohammed, Y.A., Espe, M. & Chen, C. (2017) Variation in Yield, Starch, and Protein of Dry Pea Grown Across Montana. Agronomy Journal, 109(4), 1491-1501. https://doi.org/10.2134/agronj2016.07.0401. Search in Google Scholar

49. Torino, M.I., Limón, R.I., Martínez-Villaluenga, C., Mäkinen, S., Pihlanto, A., Vidal-Valverde, C. & Frias, J. (2013) Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chemistry, 136(2), 1030-1037. https://doi.org/10.1016/j.foodchem.2012.09.015.23122159 Search in Google Scholar

50. Vagadia, B.H., Vanga, S.K. & Raghavan, V. (2017) Inactivation methods of soybean trypsin inhibitor – A review. Trends in Food Science & Technology, 64, 115–125. https://doi.org/10.1016/j.tifs.2017.02.003. Search in Google Scholar

51. Wang, H.-J., Chang, L. & Lin, Y.-S. (2021) Changes in Functionality of Germinated and Non-Germinated Brown Rice Fermented by Bacillus natto. Foods. 10(11), 2779. https://doi.org/10.3390/foods10112779.862596934829060 Search in Google Scholar

52. Zhang, C.-Q., Xu, Y.-J., Lu, Y.-Z., Li, L.-Q., Lan, X.-Z. & Zhong, Z.-C. (2020) Study on the Fatty Acids. Aromatic Compounds and Shelf Life of Paeonia ludlowii Kernel Oil. Journal of Oleo Science, 69(9), 1001-1009. https://doi.org/10.5650/jos.ess20084.32788519 Search in Google Scholar

53. Zhu, Y.P., Fan, J.F., Cheng, Y.Q. & Li, L.T. (2008) Improvement of the antioxidant activity of Chinese traditional fermented okara (Meitauza) using Bacillus subtilis B2. Food Control. 19(7). 654-661. https://doi.org/10.1016/j.foodcont.2007.07.009. Search in Google Scholar

54. Zia-Ul-Haq, M., Ahmad, M. & Iqbal, S. (2008) Characteristics of Oil from Seeds of 4 Mungbean [Vigna radiata (L.) Wilczek] Cultivars Grown in Pakistan. Journal of the American Oil Chemists’ Society, 85(9). 851-856. https://doi.org/10.1007/s11746-008-1269-z. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo