1. bookVolumen 67 (2021): Edición 4 (December 2021)
Detalles de la revista
License
Formato
Revista
eISSN
1338-4376
Primera edición
06 Jun 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Effect of different seedling growing methods on the SPAD, NDVI values and some morphological parameters of four sweet corn (Zea mays L.) hybrids

Publicado en línea: 12 Mar 2022
Volumen & Edición: Volumen 67 (2021) - Edición 4 (December 2021)
Páginas: 177 - 190
Recibido: 24 Sep 2021
Aceptado: 24 Jan 2022
Detalles de la revista
License
Formato
Revista
eISSN
1338-4376
Primera edición
06 Jun 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

The main goal of our investigation was to determine the relationship between different growing methods of sweet corn seedlings and some physiological and morphological parameters of four hybrids in order to get information about the ability of their stress tolerance in a two-year experiment (2019, 2020). Seedlings were grown with and without pre-conditioning. Pre-conditioning is based on growing young plants exposing them to cold stress. Seedling emergence percentage, plant height, total leaf number, the total mass of fresh aboveground biomass, and ear length were determined as well as Soil Plant Analysis Development (SPAD) and Normalized Difference Vegetation Index (NDVI) values. In 2019, the pre-conditioned seedlings were more tolerant to cold stress for most of the tested parameters. Overall, the SPAD and NDVI values of the pre-conditioned seedlings were considered better in both years, however, it was not verified for all the studied hybrids. Among the hybrids, ‘Strongstar’ had the highest benefit from pre-conditioning compared to the standard growing method in terms of resulting in 17.5% higher plants, 13.1% longer ears, and 10.4% higher SPAD values in 2019. In 2020, when the cold stress was not so dominant, ‘Gyöngyhajnal’ gained the most from pre-conditioning with 9.7% higher plants, 32% more fresh aboveground biomass, 6.8% longer ears, 3.6% higher SPAD, and 9.3% higher NDVI values. More emphasis should be placed on the choice of stress-tolerant hybrids as well as on the seedling growing method and the date of transplanting to improve adaptation to the more frequent weather extremes.

Keywords

Aguyoh, J., Taber, H.G., and Lawson, V. (1999). Maturity of fresh-market sweet corn with direct-seeded plants, transplants, clear plastic mulch, and rowcover combinations. HortTechnology, 9(3), 420 ‒ 425. DOI:10.21273/HORTTECH.9.3.420.10.21273/HORTTECH.9.3.420 Search in Google Scholar

Alcázar, R., Marco, F., Cuevas, J.C., Patron, M., Ferrando, A., Carrasco, P., and Altabella, T. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 28(23), 1867 ‒ 1876. DOI:10.1007/s10529-006-9179-310.1007/s10529-006-9179-3 Search in Google Scholar

Al-Jalil, H.F., Khdair, A., and Mukaha, W. (2001). Design and performance of an adjustable three-point hitch dynamometer. Soil and Tillage Research, 62(3 – 4), 153 ‒ 156. DOI:10.1016/S0167-1987(01)00219-7.10.1016/S0167-1987(01)00219-7 Search in Google Scholar

Carter, G.A. (1994). Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing, 15(3), 697 – 703. DOI:10.1080/01431169408954109.10.1080/01431169408954109 Search in Google Scholar

Ciscar, J.C., Iglesias, A., Feyen, L., Szabó, L., Van Regemorter, D., Amelung, B., Nicholls, R., Watkiss, P., Christensen, O.B., Dankers, R., Garrote, L., Goodess, C.M., Hunt, A., Moreno, A., Richards, J., and Soria, A. (2011). Physical and economic consequences of climate change in Europe. Proceedings of the National Academy of Sciences, 108(7), 2678 ‒ 2683. DOI:10.1073/pnas.1011612108.10.1073/pnas.1011612108304109221282624 Search in Google Scholar

Dobos, A., Víg, R., Nagy, J., and Hájos, M.T. (2014). Evaluation of the correlations between the normalized difference vegetation index (NDVI) and yield in a seasoning paprika (Capsicum annuum L. var. longum) stand. Acta Agraria Debreceniensis, (61), 45 ‒ 49. DOI:10.34101/acta-agrar/61/2037. Search in Google Scholar

Fruitveb (2019). A zöldségágazat helyzetértékelése a 2019. év január-augusztus időszak történései alapján [Evaluation of the vegetable sector based on the events of the period of January-August in 2019]. Available at: https://fruitveb.hu/a-zoldsegagazat-helyzetertekelese-a-2019-ev-januar-augusztus-idoszak-tortenesei-alapjan/ [Accessed 30 October 2019]. Search in Google Scholar

Gaál, M., Quiroga, S., and Fernández-Haddad, Z. (2014). Potential impacts of climate change on agricultural land use suitability of the Hungarian counties. Regional Environmental Change, 14(2), 597 ‒ 610. DOI:10.1007/s10113-013-0518-3.10.1007/s10113-013-0518-3 Search in Google Scholar

Gavric, T. and Omerbegovic, O. (2021). Effect of transplanting and direct sowing on productive properties and earliness of sweet corn. Chilean Journal of Agricultural Research, 81(1), 39 ‒ 45. DOI:10.4067/S0718-58392021000100039.10.4067/S0718-58392021000100039 Search in Google Scholar

Gombos, B., Koles, P., and Montvajszki, M. (2011). Spatial differences of night temperature in hilly regions and its horticultural importance. Agriculture and Environment, 3, 102 ‒ 109. Search in Google Scholar

Hajihashemi, S., Brestic, M., Landi, M., and Skalicky, M. (2020). Resistance of Fritillaria imperialis to freezing stress through gene expression, osmotic adjustment and antioxidants. Scientific Report, 10, 10427. DOI:10.1038/s41598-020-63006-7.10.1038/s41598-020-63006-7731997132591518 Search in Google Scholar

Iglesias, A., Quiroga, S., Moneo, M., and Garrote, L. (2012). From climate change impacts to the development of adaptation strategies: challenges for agriculture in Europe. Climatic Change, 112(1), 143 – 168. DOI:10.1007/s10584-011-0344-x.10.1007/s10584-011-0344-x Search in Google Scholar

Janda, T. (1998). Use of chlorophyll fluorescence induction techniques in the study of low temperature stress in plants. Acta Agronomica Hungarica (46), 77 ‒ 91. Search in Google Scholar

Janda, T. (2007). Termesztett növények abiotikus stresszfolyamatai és egyes védekező mechanizmusai, különös tekintettel az antioxidáns rendszerekre [Abiotic stress processes and some defence mechanisms of cultivated plants, especially antioxidant systems]. Academic Doctoral Thesis, Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár. Search in Google Scholar

Krasensky, J. and Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63, 1593. DOI:10.1093/jxb/err460.10.1093/jxb/err460435990322291134 Search in Google Scholar

Kristóf, E. and Terbe, I. (2002). Field Vegetable Production in Hungary. International Journal of Horticultural Science, 8(3 ‒ 4), 81 ‒ 84. DOI:10.31421/IJHS/8/3-4/367.10.31421/IJHS/8/3-4/367 Search in Google Scholar

Lemaire, G., Jeuffroy, M.H., and Gastal, F. (2008). Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. European Journal of Agronomy, 28(4), 614 – 624. DOI:10.1016/j. eja.2008.01.005. Search in Google Scholar

Li, H., Yue, H., Xie, J., Bu, J., Li, L., Xin, X., Zhao, Y., Zhang, H., Yang, L., Wang, J., and Jiang X. (2021). Transcriptomic profiling of the high-vigour maize (Zea mays L.) hybrid variety response to cold and drought stresses during seed germination. Scientific Report, 11, 19345. DOI:10.1038/s41598-021-98907-810.1038/s41598-021-98907-8 Search in Google Scholar

Li, S., Juhász-Horváth, L., Harrison, P.A., Pinter, L., and Rounsevell, M.D. (2017) Relating farmer’s perceptions of climate change risk to adaptation behaviour in Hungary. Journal of Environmental Management, 185, 21 ‒ 30. DOI:10.1016/j.jenvman.2016.10.051.10.1016/j.jenvman.2016.10.051 Search in Google Scholar

Molnár, K., Vig, R., Nemeskéri, E., and Dobos, A. (2012). The effect of water supply and crop year on the yield potential of sweet maize (Zea mays L. convar. saccharata Koern.) hybrids with different genotypes. Acta Agraria Debreceniensis, 50, 203 ‒ 210. DOI:10.34101/actaagrar/50/2589.10.34101/actaagrar/50/2589 Search in Google Scholar

Olesen, J.E. and Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16(4), 239 ‒ 262. DOI:10.1016/S1161-0301(02)00004-7.10.1016/S1161-0301(02)00004-7 Search in Google Scholar

Orosz, F., Jakab, S., Losak, T., and Slezak, K. (2009). Effect of fertilizer application to sweet corn (Zea mays) grown on sandy soil. Journal of Environmental Biology, 30(6), 933 ‒ 938. PMID: 20329385. Search in Google Scholar

Rattin, J., Di Benedetto, A., and Gornatti, T. (2006). The effect of transplant in sweet maize (Zea mays L.) I: Growth and Yield. International Journal of Agricultural Research, 1(1), 58 ‒ 67. DOI:10.3923/ijar.2006.58.67.10.3923/ijar.2006.58.67 Search in Google Scholar

Raun, W.R., Solie, J.B., Martin, K.L., Freeman, K.W., Stone, M.L., Johnson, G.V., and Mullen, R.W. (2005). Growth stage, development, and spatial variability in corn evaluated using optical sensor readings. Journal of Plant Nutrition, 28(1), 173 – 182. DOI:10.1081/PLN-200042277.10.1081/PLN-200042277 Search in Google Scholar

Sohag, A.A.M., Tahjib-Ul-Arif, M., Afrin, S., Khan, M.K., Hannan, M.A., Skalicky, M., Mortuza, G., Brestic, M., Hossain, M.A., and Murata, Y. (2020). Insights into nitric oxide-mediated water balance, antioxidant defence and mineral homeostasis in rice (Oryza sativa L.) under chilling stress. Nitric Oxide, 100101, 7‒16. DOI:10.1016/j.niox.2020.04.001.10.1016/j.niox.2020.04.00132283262 Search in Google Scholar

Trimble (2013). GreenSeeker Handheld Crop Sensor Quick Reference Card. Available at: http://trl.trimble.com/docushare/dsweb/Get/Document-627127/GreenSeeker-QRC_1E_91500-00-ENG_Screen.pdf [Accessed 05 February 2021]. Search in Google Scholar

Waititu, J.K., Cai, Q., Sun, Y., Sun, Y., Li, C., Zhang, C., Liu, J. and Wang, H. (2021). Transcriptome Profiling of Maize (Zea mays L.) Leaves Reveals Key Cold-Responsive Genes, Transcription Factors, and Metabolic Pathways Regulating Cold Stress Tolerance at the Seedling Stage. Genes, 12(10), 1638. DOI:10.3390/genes12101638.10.3390/genes12101638853527634681032 Search in Google Scholar

Wang, R., Cherkauer, K., and Bowling, L. (2016). Corn response to climate stress detected with satellite-based NDVI time series. Remote Sensing, 8(4), 269. DOI:10.3390/rs8040269.10.3390/rs8040269 Search in Google Scholar

Xiang, N., Hu, J., Wen, T., Brennan, M. A., Brennan, C. S., and Guo, X. (2020). Effects of temperature stress on the accumulation of ascorbic acid and folates in sweet corn (Zea mays L.) seedlings. Journal of the Science of Food and Agriculture, 100(4), 1694‒1701. DOI:10.1002/jsfa.10184.10.1002/jsfa.1018431803938 Search in Google Scholar

Zohner, C.M. et al. (2020) Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proceedings of the National Academy of Sciences of the Unites State of America, 117(22), 12192-12200. DOI:10.1073/pnas.1920816117.10.1073/pnas.1920816117727574032393624 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo