1. bookVolumen 70 (2020): Edición 1 (March 2020)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Branched PLGA derivatives with tailored drug delivery properties

Publicado en línea: 01 Nov 2019
Volumen & Edición: Volumen 70 (2020) - Edición 1 (March 2020)
Páginas: 63 - 75
Aceptado: 26 Feb 2019
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. P. Gentile, V. Chiono, I. Carmagnola and P. V. Hatton, An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering, Int. J. Mol. Sci.15 (2014) 3640–3659; https://doi.org/10.3390/ijms1503364010.3390/ijms15033640Search in Google Scholar

2. D. J. Hines and D. L. Kaplan, Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights, Crit. Rev. Ther. Drug Carrier Syst. 30 (2013) 257–276; https://doi.org/10.1615/CritRevTherDrugCarrierSyst.201300647510.1615/CritRevTherDrugCarrierSyst.2013006475Search in Google Scholar

3. H. K. Makadia and S. J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier, Polymers3 (2011) 1377–1397; https://doi.org/10.3390/polym303137710.3390/polym3031377Search in Google Scholar

4. E. Swider, O. Koshkina, J. Tel, L. J. Cruz, I. J. M. de Vries and M. Srinivas, Customizing poly(lacticco-glycolic acid) particles for biomedical applications, Acta Biomater.73 (2018) 38–51; https://doi.org/10.1016/j.actbio.2018.04.00610.1016/j.actbio.2018.04.006Search in Google Scholar

5. F. Danhier, E. Ansorena, J. M. Silva, R. Coco, A. Le Breton and V. Préat, PLGA-based nanoparticles: an overview of biomedical applications, J. Control. Release161 (2012) 505–522; https://doi.org/10.1016/j.jconrel.2012.01.04310.1016/j.jconrel.2012.01.043Search in Google Scholar

6. B. S. Nagoba, N. M. Suryawanshi, B. Wadher and S. Selkar, Acidic environment and wound healing: a review, Wounds27 (2015) 5–11.Search in Google Scholar

7. L. A. Dailey and T. Kissel, New poly(lactic-co-glycolic acid) derivatives: Modular polymers with tailored properties, Drug Discov. Today Technol.2 (2005) 7–13; https://doi.org/10.1016/j.ddtec.2005.05.01710.1016/j.ddtec.2005.05.017Search in Google Scholar

8. E. Snejdrova, M. Drastik, M. Dittrich, P. Kastner and J. Nguyenova, Mucoadhesive plasticized system of branched poly(lactic-co-glycolic acid) with aciclovir, Drug Dev. Ind. Pharm.42 (2016) 1653–1659; https://doi.org/10.3109/03639045.2016.116010910.3109/03639045.2016.1160109Search in Google Scholar

9. E. Snejdrova, M. Drastik and M. Dittrich, Plasticized branched aliphatic oligoesters as potential mucoadhesive drug carriers, Int. J. Pharm.458 (2013) 282–286; https://doi.org/10.1016/j.ijpharm.2013.10.03010.1016/j.ijpharm.2013.10.030Search in Google Scholar

10. M. Ajioka, H. Suizu, C. Higuchi and T. Kashima, Aliphatic polyesters and their copolymers synthesized through direct condensation polymerization, Polym. Degrad. Stab.59 (1998) 137–143; https://doi.org/10.1016/S0141-3910(97)00165-110.1016/S0141-3910(97)00165-1Search in Google Scholar

11. C. K. Williams, Synthesis of functionalized biodegradable polyesters, Chem. Soc. Rev.36 (2007) 1573–1580; https://doi.org/10.1039/b614342n10.1039/b614342n17721582Search in Google Scholar

12. A. Alla, K. Hakkou, F. Zamora, A. Martínez de Ilarduya, J. A. Galbis and S. Muñoz-Guerra, Poly(butylene terephthalate) Copolyesters Derived from l-Arabinitol and Xylitol, Macromolecules39 (2006) 1410–1416; https://doi.org/10.1021/ma052398v10.1021/ma052398vSearch in Google Scholar

13. M. G. García-Martín, R. R. Pérez, E. B. Hernández and J. A. Galbis, Linear polyesters of the poly[alkylene (and co-arylene) dicarboxylate] type derived from carbohydrates, Macromolecules39 (2006) 7941–7949; https://doi.org/10.1021/ma061325o10.1021/ma061325oSearch in Google Scholar

14. J. Hu, W. Gao, A. Kulshrestha and R. A. Gross, “Sweet polyesters”: lipase-catalyzed condensation-polymerizations of alditols, Macromolecules39 (2006) 6789–6792; https://doi.org/10.1021/ma061283410.1021/ma0612834Search in Google Scholar

15. S. Podzimek, Truths and myths about the determination of molar mass distribution of synthetic and natural polymers by size exclusion chromatography, J. Appl. Polymer Sci.131 (2014); http://doi.org/10.1002/app.4011110.1002/app.40111Search in Google Scholar

16. S. Podzimek, Importance of multi-angle light scattering in polyolefin characterization, Macromol. Symp. 330 (2013) 81–91; https://doi.org/10.1002/masy.20130001410.1002/masy.201300014Search in Google Scholar

17. B. H. Zimm and W. H. Stockmayer, The dimensions of chain molecules containing branches and rings, J. Chem. Phys.17 (1949) 1301–1314; https://doi.org/10.1063/1.174715710.1063/1.1747157Search in Google Scholar

18. H. B. Zimm and W. R. Kilb, Dynamics of branched polymer molecules in dilute solution, J. Polymer Sci.37 (1959) 19–42; https://doi.org/10.1002/pol.1959.120371310210.1002/pol.1959.1203713102Search in Google Scholar

19. J. F. Douglas, J. Roovers and K. F. Freed, Characterization of branching architecture through “universal” ratios of polymer solution properties, Macromolecules23 (1990) 4168–4180; https://doi.org/10.1021/ma00220a02210.1021/ma00220a022Search in Google Scholar

20. S. Podzimek, T. Vlcek and C. Johann, Characterization of branched polymers by size exclusion chromatography coupled with multiangle light scattering detector. I. Size exclusion chromatography elution behavior of branched polymers, J. Appl. Polymer Sci.81 (2001) 1588–1594; https://doi.org/10.1002/app.158910.1002/app.1589Search in Google Scholar

21. D. S. Jones, Y. Tian, O. Abu-Diak and G. P. Andrews, Pharmaceutical applications of dynamic mechanical thermal analysis, Adv. Drug Deliv. Rev.64 (2012) 440–448; https://doi.org/10.1016/j.addr.2011.12.00210.1016/j.addr.2011.12.00222192684Search in Google Scholar

22. Y. Shi, X. Cao, S. Luo, X. Wang, R. W. Graff, D. Hu, R. Guo and H. Gao, Investigate the glass transition temperature of hyperbranched copolymers with segmented monomer sequence, Macromolecules49 (2016) 4416–4422; https://doi.org/10.1021/acs.macromol.6b0114410.1021/acs.macromol.6b01144Search in Google Scholar

23. Y. Huang and W. G. Dai, Fundamental aspects of solid dispersion technology for poorly soluble drugs, Acta Pharm. Sin. B4 (2014) 18–25; https://doi.org/10.1016/j.apsb.2013.11.00110.1016/j.apsb.2013.11.001459072126579360Search in Google Scholar

24. E. Snejdrova and M. Dittrich, Pharmaceutically Used Plasticizers, in Recent Advances in Plasticizers (Ed. M. Luqman), IntechOpen, Rijeka 2012, pp. 69–90.10.5772/39190Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo