1. bookVolumen 60 (2014): Edición 4 (December 2014)
Detalles de la revista
License
Formato
Revista
eISSN
2449-8343
Primera edición
04 Apr 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Plant defense responses against viral and bacterial pathogen infections. Focus on RNA-binding proteins (RBPs)

Publicado en línea: 01 Mar 2015
Volumen & Edición: Volumen 60 (2014) - Edición 4 (December 2014)
Páginas: 60 - 73
Detalles de la revista
License
Formato
Revista
eISSN
2449-8343
Primera edición
04 Apr 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Jones JD, Dangl JL. The plant immune system. Nature 2006; 444(7117):323-9.10.1038/nature0528617108957Search in Google Scholar

2. Nawrot R, Kalinowski A, Gozdzicka-Jozefiak A. Proteomic analysis of Chelidonium majus milky sap using two-dimensional gel electrophoresis and tandem mass spectrometry. Phytochemistry 2007; 68(12):1612-1622.10.1016/j.phytochem.2007.03.03917512564Search in Google Scholar

3. Nawrot R, Tomaszewski Ł, Czerwoniec A, Goždzicka-Józefiak A. Identification of a Coding Sequence and Structure Modeling of a Glycine-Rich RNA-Binding Protein (CmGRP1) from Chelidonium majus L. Plant Mol Biol Rep 2013; 31:470-476.10.1007/s11105-012-0510-y388157324415842Search in Google Scholar

4. Woloshen V, Huang S, Li X. RNA-binding Proteins in Plant Immunity. J Pathogens 2011; 2011:e278697.10.4061/2011/278697333564322567326Search in Google Scholar

5. Huh SU, Paek KH. Plant RNA binding proteins for control of RNA virus infection. Front Physiol 2013; 4:397.Search in Google Scholar

6. Monaghan J, Xu F, Xu S, Zhang, Li X. Two putative RNA-binding proteins function with unequal genetic redundancy in the MOS4-associated complex. Plant Physiol 2010; 154(4):1783-1793.10.1104/pp.110.158931299600720943852Search in Google Scholar

7. Germain H, Na Q, Cheng Y. T. [MOS11: a new component in the mRNA export pathway. PLoS Genetics 2010; 6(12):e1001250.10.1371/journal.pgen.1001250300965721203492Search in Google Scholar

8. Deleris A, Gallago-Bartolome J, Bao J, Kasschau K. D, Carrington J. C, Voinnet O. Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense. Science 2006; 313(5783):68-71.10.1126/science.112821416741077Search in Google Scholar

9. Zhang Y, Cheng Y. T, Bi D, Palma K, Li X. MOS2, a protein containing G-patch and KOW motifs, is essential for innate immunity in Arabidopsis thaliana. Curr Biol 2005; 15(21):1936-1942.10.1016/j.cub.2005.09.03816271871Search in Google Scholar

10. Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 2008; 582(14):1977-1986.10.1016/j.febslet.2008.03.004285886218342629Search in Google Scholar

11. Staiger D. RNA-binding proteins and circadian rhythms in Arabidopsis thaliana. Philos Trans R Soc Lond B Biol Sci 2001; 356(1415):1755-1759.10.1098/rstb.2001.0964108855111710982Search in Google Scholar

12. Lorkovic ZJ. Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 2009; 14(4):229-236.10.1016/j.tplants.2009.01.007Search in Google Scholar

13. Qi Y, Tsuda K, Joe A, Sato M, Nguyen LV, Glazebrook J, Alfano JR, Cohen JD, Katagiri F. A putative RNAbinding protein positively regulates salicylic acid-mediated immunity in Arabidopsis. Mol Plant Microbe Interact 2010; 23(12):1573-1583.10.1094/MPMI-05-10-0106Search in Google Scholar

14. Kadan G, Gozler T, Shamma M. Turkiyenine, a new alkaloid from Chelidonium majus. J Nat Prod 1990; 53(2):531-532.10.1021/np50068a046Search in Google Scholar

15. Pavao M.L, Pinto R.E. Densitometric assays for the evaluation of water soluble alkaloids from Chelidonium majus L. (Papaveraceae) roots in the Azores, along one year cycle. Arquipelago, Ser Ciencias Biol Marinhas 1995; 13: 89-91.Search in Google Scholar

16. Colombo M.L, Bosisio E. Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharmacol Res 1996; 33(2):127-134.Search in Google Scholar

17. Paris R.R, Moyse H. Precis de matiere medicale. Vol. II. Paris. Masson Ed, 1967:207-208.Search in Google Scholar

18. Duke J. Handbook of Medicinal Herbs. CRC Press 1985.Search in Google Scholar

19. Bezanger-Beauquesne L, Pinkas M, Torck M, Trotin F. Plantes medicinales des regions temperees. 2nd ed. Paris. Ed Maloine, 1990.Search in Google Scholar

20. Benninger J, Schneider H. T, Schuppan D, Kirchner T, Hahn E. G. Acute hepatitis induced by greater celandine (Chelidonium majus). Gastroenterology 1999; 117:1234-1237.10.1016/S0016-5085(99)70410-5Search in Google Scholar

21. Chung, H. S, An H. J, Jeong H. J, Won J. H, Hong S. H, Kim H. M. Water extract isolated from Chelidonium majus enhances nitric oxide and tumour necrosis factor-fż production via nuclear factor-fèB activation in mouse peritoneal macrophages. J. Pharm. Pharmacol 2004; 56:129-134.Search in Google Scholar

22. Kokoska L, Polesny Z, Rada V, Nepovim A, Vanek T. Screening of some Siberian medicinal plants for antimicrobial activity. J Ethnopharmacol 2002; 82(1):51-53.10.1016/S0378-8741(02)00143-5Search in Google Scholar

23. Hiller K. O, Ghorbani M, Schilcher H. Antispasmodic and relaxant activity of chelidonine, protopine, coptisine, and Chelidonium majus extracts on isolated guinea-pig ileum. Planta Med 1998; 64:758-760.10.1055/s-2006-957576Search in Google Scholar

24. Tome F, Colombo M. L. Alkaloids from Chelidonium majus: distribution in the plant and factors affecting their accumulation. Phytochemistry 1995; 40:3-39.10.1016/0031-9422(95)00055-CSearch in Google Scholar

25. Pattanayak D, Solanke AU, Kumar PA. Plant RNA Interference Pathways: Diversity in Function, Similarity in Action. Plant Mol Biol Rep 2013; 31(3):493-506.10.1007/s11105-012-0520-9Search in Google Scholar

26. Mandadi K. K, Scholthof KB. Plant immune responses against viruses: how does a virus cause disease? Plant Cell 2013; 25(5):1489-505.Search in Google Scholar

27. Ellendorff U, Fradin EF, De Jonge R, Thomma BPHJ. RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J Exp Bot 2009; 60(2):591-602.10.1093/jxb/ern306265145119098131Search in Google Scholar

28. Zhang X, Zhao H, Gao S. Arabidopsis argonaute 2 regulates innate immunity via miRNA393-mediated silencing of a golgi-localized SNARE gene, MEMB12. Mol Cell 2011; 42(3):356-366.10.1016/j.molcel.2011.04.010310126221549312Search in Google Scholar

29. Burd CG, Dreyfuss G. Conserved structures and diversity of functions RNA-binding proteins. Science 1994; 265:615-621.10.1126/science.8036511Search in Google Scholar

30. Dreyfuss G, Kim V.N, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 2002; 3:195-205.10.1038/nrm760Search in Google Scholar

31. Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 2007; 8(6):479-490.10.1038/nrm2178Search in Google Scholar

32. Lorkovic ZJ, Barta A. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNAbinding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 2002; 30(3):623-635.10.1093/nar/30.3.623Search in Google Scholar

33. Kim JY, Kim WY, Kwak KJ, Oh SH, Han YS, Kang H. Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant Cell Environ 2010; 33(5):759-768.Search in Google Scholar

34. Owttrim GW. RNA helicases and abiotic stress. Nucleic Acids Res 2006; 34(11):3220-3230.10.1093/nar/gkl408Search in Google Scholar

35. Tam PP, Barrette-Ng I.H, Simon D.M, Tam MW, Ang AL, Muench DG. The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization]. BMC Plant Biol 2010; 10:44.10.1186/1471-2229-10-44Search in Google Scholar

36. Song JJ, Liu J, Tolia NH, Schneiderman J, Smith S. K, Martienssen RA, Hannon GJ, Joshua-Tor L. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 2003; 10(12):1026-1032.10.1038/nsb1016Search in Google Scholar

37. Alba M, Pages M. Plant proteins containing the RNA-recognition motif. Trends Plant Sci 1998; 3(1):15-21.10.1016/S1360-1385(97)01151-5Search in Google Scholar

38. Maris C, Dominguez C, Allain FH. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 2005; 272(9):2118-2131.10.1111/j.1742-4658.2005.04653.x15853797Search in Google Scholar

39. Cook K.B, Kazan H, Zuberi K, Morris Q, Hughes T.R. RBPDB: a database of RNA-binding specificities. Nucleic Acids Res 2010.10.1093/nar/gkq1069301367521036867Search in Google Scholar

40. Vermel M, Guermann B, Delage L, Grienenberger J.M, Marechal-Drouard L, Gualberto JM. A family of RRM-type RNA-binding proteins specific to plant mitochondria. Proc Natl Acad Sci USA 2002; 99(9):5866-5871.10.1073/pnas.092019599Search in Google Scholar

41. Staiger D, Korneli C, Lummer M, Navarro L. Emerging role for RNA-based regulation in plant immunity. New Phytol 2013; 197(2):394-404.10.1111/nph.12022Search in Google Scholar

42. Mousavi A, Hotta Y. Glycine-rich proteins: a class of novel proteins. Appl Biochem Biotechnol 2005; 120(3):169-174.10.1385/ABAB:120:3:169Search in Google Scholar

43. Sachetto-Martins G, Franco L, de Oliveira D. Plant glycine-rich proteins: a family or just proteins with a common motif. Biochem Biophys Acta 2000; 1492(1):1-14.10.1016/S0167-4781(00)00064-6Search in Google Scholar

44. Park C. J, Park C. B, Hong SS, Lee HS, Lee S. Y, Kim S. C. Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd's purse, Capsella bursapastoris. Plant Mol Biol 2000; 44(2):187-197.10.1023/A:1006431320677Search in Google Scholar

45. Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Gozdzicka-Jozefiak A. Plant Antimicrobial peptides. Folia Microbiol 2014; 59:181-196.10.1007/s12223-013-0280-4Search in Google Scholar

46. Bocca SN, Magioli C, Mangeon A, Junqueira RM, Cardeal V, Margis R, Sachetto-Martins G. Survey of glycine-rich proteins (GRPs) in the Eucalyptus expressed sequence tag database (ForEST). Genet Mol Biol 2005; 28(3):608-624.10.1590/S1415-47572005000400016Search in Google Scholar

47. Nawrot R, Musidlak O. Unpublished results, oral communication.Search in Google Scholar

48. Ambrosone A, Costa A, Leone A, Grillo S. Beyond transcription: RNA binding-proteins as emerging regulators of plant response to environmental constraints. Plant Sci 2012; 182:12-18.10.1016/j.plantsci.2011.02.00422118611Search in Google Scholar

49. Bailey-Serres J, Sorenson R, Juntawong P. Getting the message across: cytoplasmic ribonucleoprotein complexes. Trends Plant Sci 2009; 14(8):443-453.10.1016/j.tplants.2009.05.00419616989Search in Google Scholar

50. Sato M, Nakahara K, Yoshii M, Ishikawa M, Uyeda I. Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett 2005; 579(5):1167-1171.10.1016/j.febslet.2004.12.08615710407Search in Google Scholar

51. Duprat A, Caranta C, Revers F, Menand B, Browning K. S, Robaglia C. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 2002; (32)6:927-934.10.1046/j.1365-313X.2002.01481.xSearch in Google Scholar

52. Fedoroff NV. RNA-binding proteins in plants: the tip of an iceberg? Curr Opin Plant Biol 2002; 5(5):452- 459.Search in Google Scholar

53. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431(7006):343- 349.10.1038/nature02873Search in Google Scholar

54. Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 2006; 20(7):759-771.10.1101/gad.1410506Search in Google Scholar

55. Schauer S.E, Jacobsen SE, Meinke DW, Ray A. Dicer-Like1: blind men and elephants in Arabidopsis development. Trends Plant Sci 2002; 7(11):487-491.10.1016/S1360-1385(02)02355-5Search in Google Scholar

56. Xie Z, Allen E, Wilken A, Carrington JC. DICERLIKE4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA 2005; 102(36):12984-12989.10.1073/pnas.0506426102120031516129836Search in Google Scholar

57. Palma K, Zhao Q, Yu TC. Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms. Genes Dev 2007; 21(12):1484-1493.10.1101/gad.1559607189142617575050Search in Google Scholar

58. Monaghan J, Xu F, Gao M. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog 2009; 5(7):e1000526.10.1371/journal.ppat.1000526270944319629177Search in Google Scholar

59. Li X, Clarke JD, Zhang Y, Dong X. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Mol Plant Microbe Interact 2001; 14(10):1131-1139.10.1094/MPMI.2001.14.10.113111605952Search in Google Scholar

60. Qi Y, Tsuda K, Joe A, Sato M, Nguyen Le V, Glazebrook J. A putative RNA-binding protein positively regulates salicylic acid-mediated immunity in Arabidopsis. Mol Plant Microbe Interact 2010; 23(12):1573-1583.10.1094/MPMI-05-10-010620636102Search in Google Scholar

61. Lee HJ, Kim JS, Yoo SJ, Kang EY, Han SH, Yang KY. Different roles of glycine-rich RNA-binding protein 7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and Tobacco mosaic viruses. Plant Physiol Biochem 2012; 60:46-52.10.1016/j.plaphy.2012.07.02022902796Search in Google Scholar

62. Streitner C, Hennig L, Korneli C, Staiger D. Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7. BMC Plant Biol 2010; 10:221.10.1186/1471-2229-10-221301783120946635Search in Google Scholar

63. Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 2004; 37(2):186-198.10.1046/j.1365-313X.2003.01951.xSearch in Google Scholar

64. Srivastava S, Fristensky B, Kav NN. Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions]. Plant Cell Physiol 2004; 45(9):1320-1324.10.1093/pcp/pch13715509856Search in Google Scholar

65. Chen ZY, Brown RL, Damann KE, Cleveland TE. PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production. Mol Plant Pathol 2010; 11(1):69-81.10.1111/j.1364-3703.2009.00574.x664048420078777Search in Google Scholar

66. Wharton RP, Aggarwal AK. mRNA regulation by Puf domain proteins. Sci STKE 2006; 2006(354):pe37.10.1126/stke.3542006pe3717003467Search in Google Scholar

67. Miller MA, Olivas WM. Roles of Puf proteins in mRNA degradation and translation. Wiley Interdiscip Rev RNA 2011; 2(4):471-492.10.1002/wrna.6921957038Search in Google Scholar

68. Huh SU, Kim MJ, Paek KH. Arabidopsis Pumilio protein APUM5 suppresses Cucumber mosaic virus infection via direct binding of viral RNAs. Proc Natl Acad Sci USA 2013; 110(2):779-784.10.1073/pnas.1214287110354582123269841Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo