1. bookVolume 29 (2021): Issue 2 (April 2021)
Journal Details
First Published
08 Aug 2013
Publication timeframe
4 times per year
access type Open Access

Evaluation of Plasma AA/DHA+EPA Ratio in Obese Romanian Children

Published Online: 27 Apr 2021
Page range: 165 - 178
Received: 08 Nov 2020
Accepted: 29 Nov 2020
Journal Details
First Published
08 Aug 2013
Publication timeframe
4 times per year

The aim of the study was to evaluate the plasma profile of arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), as well to analyze the relationship of Omega 6/Omega 3 ratio with anthropo-metric parameters and insulin resistance markers.

Material and methods: Plasma levels of free fatty acids (FFAs) were measured using a high-throughput LC-MS AB Sciex4600 in 202 children (127 obese and 75 non-obese), age and sex-matched. Lipid and glucose profiles were assessed with current laboratory methods, while insulin resistance and beta-cell function were evaluated using HOMA-IR and HOMA-β respectively.

Results: In obese children, AA and AA/(DHA+EPA) ratio were significantly higher regardless of age and gender. In the lowest quartile of DHA, there was a clear trend for insulin resistance, with plasma insulin level, HOMA-IR, and HOMA-β significantly higher compared to the highest quartile of DHA. After adjustment for age and gender DHA remains a negative predictive factor for insulin resistance. Waist-to-height ratio (WHtR), a marker of visceral obesity was higher in children with a higher AA/(DHA+EPA) ratio.

Conclusions: In obese children, the AA is higher in concordance with insulin resistance. Additionally, children with a higher AA/(DHA+EPA) ratio have greater BMI, fat mass, waist circumference, and WHtR, important indicators of central adiposity, and cardio-metabolic disorders. LC/MS is a versatile tool for Omega ratio assessment, especially in children where the sample size is a limiting factor for metabolic and nutrition evaluation.


1. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.World Health Organization. 2020 accessed 01 July 2020.Search in Google Scholar

2. Simopoulos A. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients. 2016;8(3):128. DOI: 10.3390/nu803012810.3390/nu8030128Search in Google Scholar

3. Romagnolo DF, Selmin OI. Mediterranean Diet and Prevention of Chronic Diseases. Nutr Today.2017;52(5):208-22. DOI: 10.1097/NT.000000000000022810.1097/NT.0000000000000228Search in Google Scholar

4. De Mello AH, Uberti MF, De Farias BX, De Souza NAR, Rezin GT. N-3 PUFA and obesity: From peripheral tissues to the central nervous system. Br J Nutr. 2018;119(11):1312-13. DOI: 10.1017/S000711451800042910.1017/S0007114518000429Search in Google Scholar

5. González-Périz A, Horrillo R, Ferré N, Gronert K, Dong B, Morán-Salvador E, et al. Obesity-induced insulin resistance and hepatic steatosis are alleviated by ω-3 fatty acids: a role for resolvins and protectins. FASEB J. 2009;23(6):1946-57. DOI: 10.1096/fj.08-12567410.1096/fj.08-125674Search in Google Scholar

6. Dangardt F, Chen Y, Gronowitz E, Dahlgren J, Friberg P, Strandvik B, et al. High Physiological Omega-3 Fatty Acid Supplementation Affects Muscle Fatty Acid Composition and Glucose and Insulin Homeostasis in Obese Adolescents. J Nutr Metab. 2012;article ID 395757. DOI: 10.1155/2012/39575710.1155/2012/395757Search in Google Scholar

7. Cernea S, Both E, Fodor A. The association of anthropometric parameters with markers of insulin and leptin secretion and resistance in type 2 diabetes mellitus. Rev Rom Med Lab. 2020;28(3):299-314. DOI: 10.2478/rrlm-2020-002810.2478/rrlm-2020-0028Search in Google Scholar

8. Burrows T, Collins CE, Garg ML. Omega-3 index, obesity and insulin resistance in children. Int J Pediatr Obes. 2011;6(2-2):e532-9. DOI: 10.3109/17477166.2010.54948910.3109/17477166.2010.549489Search in Google Scholar

9. Harris WS, Del Gobbo L, Tintle NL. The Omega-3 Index and relative risk for coronary heart disease mortality: Estimation from 10 cohort studies. Atherosclerosis. 2017;262:51-4. DOI: 10.1016/j.atherosclerosis.2017.05.00710.1016/j.atherosclerosis.2017.05.007Search in Google Scholar

10. Tero-Vescan A, Vancea S, Huţanu A, Borka-Balás R, Dobreanu M. Concordance and controversy in determining the omega-3 index in plasma and red blood cells membrane. Farmacia. 2015;63(4):504-9.Search in Google Scholar

11. Meza KS, Pérez CET, Ramírez CAS, Valencia RM, Equihua MDT. Niveles de ácido eicosapentaenoico en escolares obesos con y sin resistencia a la insulina. Nutr Hosp. 2015;31(3):1102-8.Search in Google Scholar

12. Inoue K, Kishida K, Hirata A, Funahashi T, Shimomura I. Low serum eicosapentaenoic acid /arachidonic acid ratio in male subjects with visceral obesity. Nutr Metab. 2013;10(1):25. DOI: 10.1186/1743-7075-10-2510.1186/1743-7075-10-25Search in Google Scholar

13. Volpato M, Spencer JA, Race AD, Munarini A, Belluzzi A, Cockbain AJ, et al. A liquid chromatography-tandem mass spectrometry method to measure fatty acids in biological samples. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1055-1056:125-34. DOI: 10.1016/j.jchromb.2017.04.03010.1016/j.jchromb.2017.04.030Search in Google Scholar

14. Dillon GP, Keegan JD, Wallace G, Yiannikouris A, Moran CA. The validation & verification of an LC/MS method for the determination of total docosahexaenoic acid concentrations in canine blood serum. Regul Toxicol Pharmacol. 2018;95:198-203. DOI: 10.1016/j. yrtph.2018.03.021Search in Google Scholar

15. Aslan M, Özcan F, Aslan I, Yücel G. LC-MS/MS analysis of plasma polyunsaturated fatty acids in type 2 diabetic patients after insulin analog initiation therapy. Lipids Health Dis. 2018;12(1):169. DOI: 10.1186/1476-511X-12-16910.1186/1476-511X-12-169Search in Google Scholar

16. Serafim V, Tiugan DA, Andreescu N, Mihailescu A, Paul C, Velea I, et al. Development and validation of a LC-MS/MS-based assay for quantification of free and total omega 3 and 6 fatty acids from human plasma. Molecules. 2019;24(2):360. DOI: 10.3390/molecules2402036010.3390/molecules24020360Search in Google Scholar

17. Salm P, Taylor PJ, Kostner K. Simultaneous quantification of total eicosapentaenoic acid, docosahexaenoic acid and arachidonic acid in plasma by high-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 2011;25(6):652-9. DOI: 10.1002/bmc.149610.1002/bmc.1496Search in Google Scholar

18. Rochat B. Quantitative and Qualitative LC-High-Resolution MS: The Technological and Biological Reasons for a Shift of Paradigm. Recent Advances in Analytical Chemistry. IntechOpen; 2018. DOI: 10.5772/intechopen.8128510.5772/intechopen.81285Search in Google Scholar

19. Prader A, Largo RH, Molinari L, Issler C. Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. Helv Paediatr Acta Suppl. 1989;52:1-125.Search in Google Scholar

20. Vasilache SL, Mărginean CO, Boaghi A, Pop R, Banescu C, Moldovan VG, et al. Implications of visfatin genetic variants in the metabolic profile of the Romanian pediatric population. Rev Romana Med Lab. 2020;28(2):163-74. DOI: 10.2478/rrlm-2020-001510.2478/rrlm-2020-0015Search in Google Scholar

21. Lim J, Kim J, Koo SH, Kwon GC. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007-2010 Korean national health and nutrition examination survey. PLoS One. 2019;14(3):e0212963. DOI: 10.1371/journal.pone.021296310.1371/journal.pone.0212963Search in Google Scholar

22. Kim B, Choi HY, Kim W, Ahn C, Lee J, Kim JG, et al. The cut-off values of surrogate measures for insulin resistance in the Korean population according to the Korean Genome and Epidemiology Study (KOGES). PLoS One. 2018;13(11):e0206994. DOI: 10.1371/journal.pone.020699410.1371/journal.pone.0206994Search in Google Scholar

23. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299-304. DOI: 10.1089/met.2008.003410.1089/met.2008.0034Search in Google Scholar

24. Vieira-Ribeiro SA, Fonseca PCA, Andreoli CS, Ribeiro AQ, Hermsdorff HHM, Pereira PF, et al. The TyG index cutoff point and its association with body adiposity and lifestyle in children. J Pediatr.2019;95(2):217-23. DOI: 10.1016/j.jped.2017.12.01210.1016/j.jped.2017.12.012Search in Google Scholar

25. Pop RM, Pop M, Dogaru G, Bacarea VC. A web-based nutritional assessment tool. Stud Informatics Control. 2013;22(2):307-14. DOI: 10.24846/v22i3y20130710.24846/v22i3y201307Search in Google Scholar

26. Medicines Agency E. 2** Committee for Medicinal Products for Human Use (CHMP) Guideline on bioanalytical method validation. 2011. www.ema.europa.eu/contact.Search in Google Scholar

27. D’innocenzo S, Biagi C, Lanari M. Obesity and the mediterranean diet: A review of evidence of the role and sustainability of the mediterranean diet. Nutrients. 2019;11(6):1306. DOI: 10.3390/nu1106130610.3390/nu11061306Search in Google Scholar

28. Kershaw EE, Flier JS. Adipose Tissue as an Endocrine Organ. The Journal of Clinical Endocrinology & Metabolism. 2004;89(6):2548-56. DOI: 10.1210/jc.2004-039510.1210/jc.2004-0395Search in Google Scholar

29. Rupérez FJ, Martos-Moreno GÁ, Chamoso-Sánchez D, Barbas C, Argente J. Insulin Resistance in Obese Children: What Can Metabolomics and Adipokine Modelling Contribute? Nutrients. 2020;12(11):3310. DOI: 10.3390/nu1211331010.3390/nu12113310Search in Google Scholar

30. Kalupahana NS, Claycombe KJ, Moustaid-Moussa N. (n-3) Fatty Acids Alleviate Adipose Tissue Inflammation and Insulin Resistance: Mechanistic Insights. Advances in Nutrition 2011;2(4):304-316. DOI: 10.3945/an.111.00050510.3945/an.111.000505Search in Google Scholar

31. Ferrante SC, Nadler EP, Pillai DK, Hubal MJ, Wang Z, Wang JM, et al. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res. 2015;77(3):447-54. DOI: 10.1038/pr.2014.20210.1038/pr.2014.202Search in Google Scholar

32. Kim A, Shah A, Nakamura T. Extracellular Vesicles: A Potential Novel Regulator of Obesity and Its Associated Complications. Children. 2018;5(11):152. DOI: 10.3390/children511015210.3390/children5110152Search in Google Scholar

33. Kanninen KM, Bister N, Koistinaho J, Malm T. Exosomes as new diagnostic tools in CNS diseases. Biochim Biophys Acta - Mol Basis Dis. 2016;1862(3):403-410. DOI: 10.1016/j.bbadis.2015.09.02010.1016/j.bbadis.2015.09.020Search in Google Scholar

34. LeBleu VS, Kalluri R. Exosomes as a Multicomponent Biomarker Platform in Cancer. Trends in Cancer. Cell Press 2020;6(9):767-774 DOI: 10.1016/j.trecan.2020.03.00710.1016/j.trecan.2020.03.007Search in Google Scholar

35. Bălașa A, Șerban G, Chinezu R, Hurghiș C, Tămaș F, Manu D. The involvement of exosomes in glioblastoma development, diagnosis, prognosis, and treatment. Vol. 10, Brain Sciences. 2020;10(8):1-16. DOI: 10.3390/brainsci1008055310.3390/brainsci10080553Search in Google Scholar

36. Ferrannini E, Iozzo P, Virtanen KA, Honka MJ, Bucci M, Nuutila P. Adipose tissue and skeletal muscle insulin-mediated glucose uptake in insulin resistance: Role of blood flow and diabetes. Am J Clin Nutr. 2018;108(4):749-58. DOI: 10.1093/ajcn/nqy16210.1093/ajcn/nqy162Search in Google Scholar

37. Bouché C, Serdy S, Kahn CR, Goldfine AB. The cellular fate of glucose and its relevance in type 2 diabetes. Endocrine Reviews 2004;25(5):807-30. DOI: 10.1210/er.2003-002610.1210/er.2003-0026Search in Google Scholar

38. Honka MJ, Latva-Rasku A, Bucci M, Virtanen KA, Hannukainen JC, Kalliokoski KK, et al. Insulin-stimulated glucose uptake in skeletal muscle, adipose tissue and liver: A positron emission tomography study. Eur J Endocrinol. 2018;178(5):523-31. DOI: 10.1530/EJE-17-088210.1530/EJE-17-0882Search in Google Scholar

39. Castro-Correia C, Sousa S, Norberto S, Matos C, Domingues VF, Fontoura M, et al. The Fatty Acid Profile in Patients with Newly Diagnosed Diabetes: Why It Could Be Unsuspected. Hindawi. Int J Pediatr. 2017; article ID 64241861. DOI: 10.1155/2017/642418610.1155/2017/6424186Search in Google Scholar

40. Roessler C, Kuhlmann K, Hellwing C, Leimert A, Schumann J. Impact of polyunsaturated fatty acids on miRNA profiles of monocytes/macrophages and endothelial cells-a pilot study. Int J Mol Sci. 2017;18:284. DOI: 10.3390/ijms1802028410.3390/ijms18020284Search in Google Scholar

41. Hutanu A, Iancu M, Dobreanu M, Oprea O, Barbu S, Maier S, et al. Extended lipid profile in Romanian ischemic stroke patients in relation to stroke severity and outcome: a path analysis model. Arch Med Sci. 2019. DOI: 10.5114/aoms.2019.8930210.5114/aoms.2019.89302Search in Google Scholar

42. Harris WS. The omega-3 index as a risk factor for coronary heart disease. American Journal of Clinical Nutrition. Am J Clin Nutr. 2008 Jun;87(6):1997S-2002S. DOI: 10.1093/ajcn/87.6.1997S10.1093/ajcn/87.6.1997SSearch in Google Scholar

43. Zhang YY, Liu W, Zhao TY, Tian HM. Efficacy of omega-3 polyunsaturated fatty acids supplementation in managing overweight and obesity: A meta-analysis of randomized clinical trials. J Nutr Heal Aging. 2017;21(2):187-92. DOI: 10.1007/s12603-016-0755-510.1007/s12603-016-0755-5Search in Google Scholar

44. Micallef M, Munro I, Phang M, Garg M. Plasma n-3 polyunsaturated fatty acids are negatively associated with obesity. Br J Nutr. 2009;102(9):1370-4. DOI: 10.1017/S000711450938217310.1017/S0007114509382173Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo