1. bookVolume 28 (2020): Issue 3 (July 2020)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Comparative Evaluation of RNAlater Solution and Snap Frozen Methods for Gene Expression Studies in Different Tissues

Published Online: 27 Jul 2020
Page range: 287 - 297
Received: 25 Nov 2019
Accepted: 25 Mar 2020
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Introduction: Freezing of tissues with liquid nitrogen is the most common method in studies performed at the RNA level. However, the use of RNA stabilization solutions has become a popular alternative method. The aim of this study is to investigate the effectiveness of RNAlater on RNA stabilization in different tissues.

Material and Methods: In this study, RNA were isolated from the lung, heart, liver and skeletal muscle tissues of rats that were frozen with liquid nitrogen (snap frozen, SF group) or stored in RNAlater solution (RL group), and the changes in concentration, purity, reference genes expression, and fold-change levels between groups were analyzed.

Results: In the RL group, the concentration of RNA isolated from the liver tissues was higher (P<0.05), whereas the A260/280 ratio was lower in the heart and liver tissues (P<0.05). PPIA and SRP72 genes were found to have lower Ct values in the heart tissues of rats in the RL group (P<0.05 and P<0.001, respectively) than the SF group. Expression levels of PPIA, ACTB, and SRP72 genes across the tissues were found to be different between the groups (P<0.05). The gene expression level examined in terms of fold-change was significantly different in the RL group (upregulated up to 4 folds and downregulated about 0.5 fold) (P< 0.05).

Conclusions: The results showed that RNAlater can maintain the RNA integrity and can also change the results of gene expression because it does not inhibit biological activity. The snap freezing method is more reliable because gene expression is more stable in tissues frozen with liquid nitrogen.

Keywords

1. Pérez-Novo CA, Claeys C, Speleman F, Van Cauwenberge P, Bachert C, Vandesompele J. Impact of RNA quality on reference gene expression stability. BioTechniques. 2005;39(1):52-6. DOI: 10.2144/05391BM0510.2144/05391BM0516060369Search in Google Scholar

2. González-Herrera L, Valenzuela A, Marchal JA, Lorente JA, Villanueva E. Studies on RNA integrity and gene expression in human myocardial tissue, pericar-dial fluid and blood, and its postmortem stability. Forensic Sci Int. 2013;232(1-3):218-28. DOI: 10.1016/j. forsciint.2013.08.001Search in Google Scholar

3. Özkan H, Yakan A. RNA Quality in Snap and Directly -80°C Frozen Liver Tissues. Lalahan Hay Araşt Enst Derg. 2018;58(1): 42-7.Search in Google Scholar

4. Mohammad Najafi ZS. RNA Preservation and Stabilization. Biochem Physiol. 2014;3(1):1-4. DOI: 10.4172/2168-9652.100012610.4172/2168-9652.1000126Search in Google Scholar

5. Kasahara T, Miyazaki T, Nitta H, Ono A, Miyagishima T, Nagao T, et al. Evaluation of methods for duration of preservation of RNA quality in Rat liver used for transcriptome analysis. J Toxicol Sci. 2006;31(5):509-19. DOI: 10.2131/jts.31.50910.2131/jts.31.50917202763Search in Google Scholar

6. Esteve-Codina A, Arpi O, Martinez-Garca M, Pineda E, Mallo M, Gut M, et al. A Comparison of RNA-Seq Results from Paired Formalin-Fixed Paraffin-Embedded and Fresh-Frozen Glioblastoma Tissue Samples. PloS one. 2017;12(1):1-18. DOI: 10.1371/journal. pone.0170632Search in Google Scholar

7. Wang SS, Sherman ME, Rader JS, Carreon J, Schiffman M, Baker CC. Cervical tissue collection methods for RNA preservation: comparison of snap-frozen, ethanol-fixed, and RNAlater-fixation. Diagn mol pathol. 2006;15(3):144-8. DOI: 10.1097/01. pdm.0000213460.53021.cd10.1097/01Search in Google Scholar

8. Wang Y, Zheng H, Chen J, Zhong X, Wang Y, Wang Z, et al. The Impact of Different Preservation Conditions and Freezing-Thawing Cycles on Quality of RNA, DNA, and Proteins in Cancer Tissue. Biopreserv Bio-bank. 2015;13(5):335-47. DOI: 10.1089/bio.2015.002910.1089/bio.2015.002926484573Search in Google Scholar

9. Arnold PR, Lord NP, Smith AN, Bybee SM. The Effects of Non-Ideal Temperature Regimes on RNA Quality from Samples Stored in RNAlater-like Buffer: An Attempt to Replicate Field Conditions. J Analyt Molecul Tech. 2016;2(1):1-8. DOI: 10.13188/2474-1914.100000610.13188/2474-1914.1000006Search in Google Scholar

10. Kirchner B, Paul V, Riedmaier I, Pfaffl MW. mRNA and microRNA Purity and Integrity: The Key to Success in Expression Profiling. Methods Mol Biol. 2014; 43-53. DOI: 10.1007/978-1-4939-0733-5_510.1007/978-1-4939-0733-5_524740220Search in Google Scholar

11. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin Chem. 2009;55(4):611-22. DOI: 10.1373/clinchem.2008.11279710.1373/clinchem.2008.11279719246619Search in Google Scholar

12. Koppelkamm A, Vennemann B, Fracasso T, Lutz-Bonengel S, Schmidt U, Heinrich M. Validation of adequate endogenous reference genes for the normal-isation of qPCR gene expression data in human post mortem tissue. Int J Legal Med. 2010;124(5):371-80. DOI: 10.1007/s00414-010-0433-910.1007/s00414-010-0433-920300940Search in Google Scholar

13. McIntosh CH, Baird J, Zinser E, Woods DJ, Campbell EM, Bowman AS. Reference gene selection and RNA preservation protocol in the cat flea, Ctenocephalides felis, for gene expression studies. Parasitology. 2016;143(12):1532-42. DOI: 10.1017/S003118201600102510.1017/S003118201600102527406059Search in Google Scholar

14. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun. 2004;313(4):856-62. DOI: 10.1016/j. bbrc.2003.11.177Search in Google Scholar

15. Passow CN, Kono TJY, Stahl BA, Jaggard JB, Keene AC, McGaugh SE. RNAlater and flash freezing storage methods nonrandomly influence observed gene expression in RNAseq experiments. bioRxiv. 2018; 1-15. DOI: 10.1101/37983410.1101/379834Search in Google Scholar

16. Gonzlez-Herrera L, Valenzuela A, Marchal JA, Lorente JA, Villanueva E. Studies on RNA integrity and gene expression in human myocardial tissue, pericardial fluid and blood, and its postmortem stability. Forensic Sci Int. 2013;232(1-3):218-28. DOI: 10.1016/j.forsciint.2013.08.00110.1016/j.forsciint.2013.08.001Search in Google Scholar

17. Tu C, Du T, Shao C, Liu Z, Li L, Shen Y. Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI. Forensic Sci Med Pathol. 2018;14(2):194-201. DOI: 10.1007/s12024-018-9973-y10.1007/s12024-018-9973-ySearch in Google Scholar

18. Eisenberg E, Levanon EY. Human housekeeping genes, revisited. Trends Genet. 2013;29(10):569-74. DOI: 10.1016/j.tig.2013.05.01010.1016/j.tig.2013.05.010Search in Google Scholar

19. Stürzenbaum SR, Kille P. Control genes in quantitative molecular biological techniques: The variability of invariance. Comp Biochem Physiol B Biochem Mol Biol. 2001;130(3):281-9. DOI: 10.1016/S1096-4959(01)00440-710.1016/S1096-4959(01)00440-7Search in Google Scholar

20. de Jonge HJM, Fehrmann RSN, de Bont ESJM, Hofstra RMW, Gerbens F, Kamps WA, et al. Evidence Based Selection of Housekeeping Genes. PLoS ONE. 2007;2(9):1-5. DOI: 10.1371/journal.pone.000089810.1371/journal.pone.0000898197639017878933Search in Google Scholar

21. Synnergren J, Giesler TL, Adak S, Tandon R, Noaksson K, Lindahl A, et al. Differentiating human embryonic stem cells express a unique housekeeping gene signature. Stem cells. 2007;25(2):473-80. DOI: 10.1634/stemcells.2006-024710.1634/stemcells.2006-024717284652Search in Google Scholar

22. Rio DC, Ares M, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI Reagent). Cold Spring Harb Protocols. 2010;5(6):1-4. DOI: 10.1101/pdb.prot543910.1101/pdb.prot543920516177Search in Google Scholar

23. dos Santos BP, da Costa Diesel LF, da Silva Meirelles L, Nardi NB, Camassola M. Identification of suitable reference genes for quantitative gene expression analysis in rat adipose stromal cells induced to trilineage differentiation. Gene. 2016;594(2):211-9. DOI: 10.1016/j. gene.2016.09.002Search in Google Scholar

24. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25(4):402-8. DOI: 10.1006/meth.2001.126210.1006/meth.2001.126211846609Search in Google Scholar

25. Sun J-h, Nan L-h, Gao C-r, Wang Y-y. Validation of reference genes for estimating wound age in contused rat skeletal muscle by quantitative real-time PCR. International J Leg Med. 2012;126(1):113-20. DOI: 10.1007/s00414-011-0604-310.1007/s00414-011-0604-321845441Search in Google Scholar

26. Li J, Smyth P, Flavin R, Cahill S, Denning K, Aherne S, et al. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol. 2007;7(1):36-42. DOI: 10.1186/1472-6750-7-3610.1186/1472-6750-7-36Search in Google Scholar

27. Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med. 2006;27(2-3):126-39. DOI: 10.1016/j. mam.2005.12.003Search in Google Scholar

28. Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1(3):1559-82. DOI: 10.1038/nprot.2006.23610.1038/nprot.2006.236Search in Google Scholar

29. Miller CL, Diglisic S, Leister F, Webster M, Yolken RH. Evaluating RNA status for RT-PCR in extracts of postmortem human brain tissue. BioTechniques. 2004;36(4):628-33. DOI: 10.2144/04364ST0310.2144/04364ST03Search in Google Scholar

30. Imbeaud S. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res. 2005;33(6):56-68. DOI: 10.1093/nar/gni05410.1093/nar/gni054Search in Google Scholar

31. Kono N, Nakamura H, Ito Y, Tomita M, Arakawa K. Evaluation of the impact of RNA preservation methods of spiders for de novo transcriptome assembly. Mol Ecol Resour. 2016;16(3):662-72. DOI: 10.1111/1755-0998.1248510.1111/1755-0998.12485Search in Google Scholar

32. Martin NM, Cooke KM, Radford CC, Perley LE, Silasi M, Flannery CA. Time course analysis of RNA quality in placenta preserved by RNA later or flash freezing. Am J Reprod Immunol. 2017;77(4):1-5. DOI: 10.1111/aji.1263710.1111/aji.12637539734928138995Search in Google Scholar

33. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, et al. Housekeeping genes as internal standards: use and limits. J Biotechnol. 1999;75(2-3):291-5. DOI: 10.1016/S0168-1656(99)00163-710.1016/S0168-1656(99)00163-7Search in Google Scholar

34. Martin NM, Cooke KM, Radford CC, Perley LE, Silasi M, Flannery CA. Time course analysis of RNA quality in placenta preserved by RNAlater or flash freezing. Am J Reprod Immunol. 2017;77(4):1-5. DOI: 10.1111/aji.1263710.1111/aji.12637Search in Google Scholar

35. Viertler C, Groelz D, Gündisch S, Kashofer K, Reischauer B, Riegman PHJ, et al. A New Technology for Stabilization of Biomolecules in Tissues for Combined Histological and Molecular Analyses. J Mol Diagn. 2012;14(5):458-66. DOI: 10.1016/j. jmoldx.2012.05.002Search in Google Scholar

36. Hruz T, Wyss M, Docquier M, Pfaffl MW, Masanetz S, Borghi L, et al. RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics. 2011;12(1):156-170. DOI: 10.1186/1471-2164-12-15610.1186/1471-2164-12-156307295821418615Search in Google Scholar

37. Sampaio-Silva F, Magalhes T, Carvalho F, Dinis-Oliveira RJ, Silvestre R. Profiling of RNA degradation for estimation of post mortem corrected interval. PloS one. 2013;8(2):1-8. DOI: 10.1371/journal.pone.005650710.1371/journal.pone.0056507357790823437149Search in Google Scholar

38. Evers DL, Fowler CB, Cunningham BR, Mason JT, O’Leary TJ. The Effect of Formaldehyde Fixation on RNA. J Mol Diagn. 2011;13(3):282-8. DOI: 10.1016/j. jmoldx.2011.01.010Search in Google Scholar

39. Hatzis C, Sun H, Yao H, Hubbard RE, Meric-Bernstam F, Babiera GV, et al. Effects of Tissue Handling on RNA Integrity and Microarray Measurements From Resected Breast Cancers. J Natl Cancer Inst. 2011;103(24):1871-83. DOI: 10.1093/jnci/djr43810.1093/jnci/djr438324367522034635Search in Google Scholar

40. Mutter GL, Zahrieh D, Liu C, Neuberg D, Finkelstein D, Baker HE, et al. Comparison of frozen and RNALater solid tissue storage methods for use in RNA expression microarrays. BMC genomics. 2004;5:88-95. DOI: 10.1186/1471-2164-5-8810.1186/1471-2164-5-8853409915537428Search in Google Scholar

41. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347(6220):1-11. DOI: 10.1126/science.126041910.1126/science.126041925613900Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo