1. bookVolume 28 (2020): Issue 2 (April 2020)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Bone status and aortic calcifications in chondrocalcinosis patients

Published Online: 04 May 2020
Page range: 195 - 204
Received: 25 Nov 2019
Accepted: 19 Feb 2020
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Aim: We aimed to examine the association between several circulating bone turnover markers [ osteocalcin (OC), osteoprotegerin (OPG), beta-CrossLaps (β-CTx)], hip and spine bone mineral density (BMD) and abdominal aortic calcification (AAC) in patients with chondrocalcinosis (CC).

Methods: Thirty-six patients with CC and thirty-seven controls were consecutively enrolled in this pilot case-control, cross-sectional study. The following parameters were assessed: serum levels of OC, OPG and β-CTx by enzyme-linked immunosorbent assay (ELISA); hip and spine BMD by dual-energy X-ray absorptiometry and AAC score by lateral radiography.

Results: Patients with CC had higher levels of serum bone turnover markers and AAC score than the control group: OC [6.5 (3.5-9.9) vs 4.5 (2.6-7.2) ng/ml; p=0.05], OPG [(7.7 (6.2-9.4) vs 6.5 (5.5-8.12) pmol/ml; p=0.02], β-CTx [6078 (5870-6171) vs 5851 (5465-6109) pg/ml; p=0.02] and AAC score (3.6±6.2 vs 0.5±2; p=0.006). Conversely, even if statistical significance was not reached, hip and spine BMD was lower in patients with CC. Additionally, we found a positive correlation between OPG and AAC, but also between OPG and osteoporosis in patients with CC.

Conclusion: Patients with CC are characterized by higher circulating OC, OPG and β-CTx. The presence of AAC was more common in patients with CC, being only associated with serum OPG.

Keywords

1. McCarty DJ. Calcium pyrophosphate dihydrate (CPPD) crystal deposition disease - nomenclature and diagnostic criteria. Ann Int Med. 1977 Aug; 87:240-242. DOI: 10.7326/0003-4819-87-2-24010.7326/0003-4819-87-2-240Search in Google Scholar

2. Zhang W, Doherty M, Bardin T, Barskova V, Guerne PA, Jansen TL et al. European league against rheumatism recommendations for calcium pyrophosphate deposition. Part I: Terminology and diagnosis. Ann Rheum Dis. 2011 Apr;70(4):563-570. DOI: 10.1136/ard.2010.13910510.1136/ard.2010.139105Search in Google Scholar

3. Genant HK Roentgenographic aspects of calcium. pyrophosphate dihydrate crystal deposition disease (pseudogout). Arthritis Rheum. 1976 May-Jun;19 (Suppl 3):307-28. DOI: 10.1002/1529-0131(197605/06)19:3+<307::AIDART1780190705>3.0.CO;2-9Search in Google Scholar

4. Frediani B, Filippou G, Falsetti P, Lorenzini S, Baldi F, Acciai C et al. Diagnosis of calcium pyrophosphate dihydrate crystal deposition disease: Ultrasonographic criteria proposed. Ann Rheum Dis. 2005 Apr;64(4): 638-640. DOI: 10.1136/ard.2004.02410910.1136/ard.2004.024109Search in Google Scholar

5. Thouverey C, Bechkoff G, Pikula S, Buchet R. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthr Cartil. 2009 Jan;17(1):64-72. DOI: 10.1016/j.joca.2008.05.02010.1016/j.joca.2008.05.020Search in Google Scholar

6. Terkeltaub RA. What does cartilage calcification tell us about osteoarthritis? Journal of Rheumatology. 2002 Apr;29(3):411-5.Search in Google Scholar

7. Wilson PW, Kauppila LI, O’Donnel CJ, Kiel DP, Hannan M, Polak JM et al. Abdominal aortic calcific deposits are an important predictor of vascular morbidity and mortality. Circulation. 2001 Mar;103(11):1529-1534. DOI: 10.1161/01.CIR.103.11.152910.1161/01.CIR.103.11.1529Search in Google Scholar

8. Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA. 2004 Jul;28;292(4):490-495. DOI: 10.1001/jama.292.4.49010.1001/jama.292.4.490Search in Google Scholar

9. Von der Recke P, Hansen MA, Hassager C. The association between low bone mass at the menopause and cardiovascular mortality. Am J Med. 1999 Mar;106(3):273-8. DOI: 10.1016/S0002-9343(99)00028-510.1016/S0002-9343(99)00028-5Search in Google Scholar

10. Rutsch F, Nitschke Y,Terkeltaub R. Genetics in arterial calcification: Pieces of a puzzle and cogs in a wheel. Circ Res. 2011 Aug;109:578-592. DOI: 10.1161/CIR-CRESAHA.111.247965Search in Google Scholar

11. Cailotto F, Bianchi A, Sebillaud S, Venkatesan N, Moulin D, Jouzeau JY et al. Inorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes. Arthritis Res Ther. 2007;9(6):R12. DOI: 10.1186/ar233010.1186/ar2330224624118034874Search in Google Scholar

12. Wu M, Rementer C, Giachelli CM. Vascular calcification: An update on mechanisms and challenges in treatment. Calcif Tissue Int. 2013 Oct; 93(4):365-373. DOI: 10.1007/s00223-013-9712-z10.1007/s00223-013-9712-z371435723456027Search in Google Scholar

13. Abhishek A, Doherty S, Maciewicz R, Muir K, Zhang W, Doherty M et al. The association between ANKH promoter polymorphism and chondrocalcinosis is independent of age and osteoarthritis: Results of a case-control study. Arthritis Res Ther. 2014 Jan;16(1):R25. DOI: 10.1186/ar445310.1186/ar4453397885124467728Search in Google Scholar

14. Rutsch F, Terkeltaub R. Parallels between arterial and cartilage calcification: what understanding artery calcification can teach us about chondrocalcinosis. Curr Opin Rheumatol. 2003 May; 15(3):302-310. DOI: 10.1097/00002281-200305000-0001910.1097/00002281-200305000-0001912707585Search in Google Scholar

15. Rutsch F, Terkeltaub R. Deficiencies of physiologic calcification inhibitors and low-grade inflammation in arterial calcification: lessons for cartilage calcification. Joint Bone Spine. 2005 Mar;72(2):110-118. DOI: 10.1016/j.jbspin.2004.05.01410.1016/j.jbspin.2004.05.01415797489Search in Google Scholar

16. Addison WN, Azari F, Sørensen ES, Kaartinen MT, McKee MD. Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem. 2007 May;282(21):15872-83. DOI: 10.1074/jbc.M70111620010.1074/jbc.M70111620017383965Search in Google Scholar

17. Chang CC, Tsai YH, Liu Y, Lin SY, Liang YC. Calcium-containing crystals enhance receptor activator of nuclear factor κB ligand/macrophage colonystimulating factor-mediated osteoclastogenesis via extracellular-signal-regulated kinase and p38 pathways. Rheumatol. 2015 Mar;54(10):1913-22. DOI: 10.1093/rheumatology/kev10710.1093/rheumatology/kev10725998451Search in Google Scholar

18. Cheung HS, Sallis JD, Demadis KD, Wierzbicki A. Phosphocitrate blocks calcification-induced articular joint degeneration in a guinea pig model. Arthritis Rheum. 2006 Aug;54(8):2452-61. DOI: 10.1002/art.2201710.1002/art.2201716869019Search in Google Scholar

19. McCarthy GM, Dunne A. Calcium crystal deposition diseases - beyond gout. Nat Rev Rheumatol. 2018 Oct;14(10),592-602. DOI: 10.1038/s41584-018-0078-510.1038/s41584-018-0078-530190520Search in Google Scholar

20. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998 May;12(9):1260-8. DOI: 10.1101/gad.12.9.126010.1101/gad.12.9.12603167699573043Search in Google Scholar

21. Abhishek A, Doherty S, Maciewicz R, Muir K, Zhang W, Doherty M. Evidence of a systemic predisposition to chondrocalcinosis and association between chondrocalcinosis and osteoarthritis at distant joints: A cross-sectional study. Arthritis Care Res (Hoboken). 2013 Jul; 65(7):1052-8. DOI: 10.1002/acr.2195210.1002/acr.2195223335553Search in Google Scholar

22. Bailey AJ, Mansell JP, Sims TJ, Banse X. Biochemical and mechanical properties of subchondral bone in osteoarthritis. Biorheology. 2004;41(3-4):349-58.Search in Google Scholar

23. Garnero P, Piperno M, Gineyts E, Christgau S, Delmas PD, Vignon E . Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: Relations with disease activity and joint damage. Ann Rheum Dis. 2001 Jun; 60(6):619-26. DOI: 10.1136/ard.60.6.61910.1136/ard.60.6.619175366611350852Search in Google Scholar

24. Swan A, Amer H, Dieppe P. The value of synovial fluid assays in the diagnosis of joint disease: a literature survey. Ann Rheum Dis. 2002 Jun;61(6):493-8. DOI: 10.1136/ard.61.6.49310.1136/ard.61.6.493175413512006320Search in Google Scholar

25. Kanis JA. An update on the diagnosis of osteoporosis. Current Rheumatol Rep. 2002 Feb;2(1): 62-66. DOI: 10.1007/s11926-996-0070-y10.1007/s11926-996-0070-ySearch in Google Scholar

26. Kauppila LI, Polak JF, Cupples LA, Hannan MT, Kiel DP, Wilson PW. New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: A 25-year follow-up study. Atherosclerosis. 1997 Jul;132(2): 245-250. DOI: 10.1016/S0021-9150(97)00106-810.1016/S0021-9150(97)00106-8Search in Google Scholar

27. Cannata-Andia JB, Roman-Garcia P, Hruska K . The connections between vascular calcification and bone health. Nephrol Dial Transplant. 2011 Nov; 26(11):3429-3436 DOI: 10.1093/ndt/gfr59110.1093/ndt/gfr591417605522039012Search in Google Scholar

28. Doherty M. Association between low cortical bone mineral density, soft-tissue calcification, vascular calcification and chondrocalcinosis: a case-control study. Ann Rheum Dis. 2014 Nov;73(11):1997-2002. DOI: 10.1136/annrheumdis-2013-20340010.1136/annrheumdis-2013-20340023912799Search in Google Scholar

29. Kleiber Balderrama C, Rosenthal AK, Lans D, Singh JA, Bartels CM. Calcium pyrophosphate deposition disease and associated medical comorbidities: A national cross-sectional study of us veterans. Arthritis Care Res (Hoboken). 2017 Sep; 69(9):1400-1406. DOI: 10.1002/acr.2316010.1002/acr.23160547249127898996Search in Google Scholar

30. Hardcastle SA, Dieppe P, Gregson CL, Arden NK, Spector TD, Hart DJ, Edwards MH et al. Individuals with high bone mass have an increased prevalence of radiographic knee osteoarthritis. Bone. 2015 Feb; 71:171-9. DOI: 10.1016/j.bone.2014.10.01510.1016/j.bone.2014.10.015428991525445455Search in Google Scholar

31. Neame RL, Carr AJ, Muir K, Doherty M. UK community prevalence of knee chondrocalcinosis: Evidence that correlation with osteoarthritis is through a shared association with osteophyte. Ann Rheum Dis. 2003 Jun;62(6):513-518. DOI: 10.1136/ard.62.6.51310.1136/ard.62.6.513175457912759286Search in Google Scholar

32. Garg MK, Kharb S. Dual energy X-ray absorptiometry: Pitfalls in measurement and interpretation of bone mineral density. Indian J Endocrinol Metab. 2013 Mar; 17(2),203-10 DOI: 10.4103/2230-8210.10965910.4103/2230-8210.109659368319223776890Search in Google Scholar

33. Ichchou L, Allali F, Rostom S, Bennani L, Hmamouchi I, Abourazzak FZ et al. Relationship between spine osteoarthritis, bone mineral density and bone turn over markers in post menopausal women. BMC Womens Health. 2010 Aug;10:25. DOI: 10.1186/1472-6874-10-2510.1186/1472-6874-10-25292425220691114Search in Google Scholar

34. Pawlotsky Y, Massart C, Guggenbuhl P, Albert JD, Perdriger A, Meadeb Jet al. Elevated parathyroid hormone 44-68 in idiopathic calcium pyrophosphate dihydrate crystal deposition disease. Role of menopause and iron metabolism? J Rheumatol 2008 Feb;35(2):315-318.Search in Google Scholar

35. Mosekilde L. Primary hyperparathyroidism and the skeleton. Clin Endocrinol (Oxf). 2008 Jul;69(1):1-19. DOI: 10.1111/j.1365-2265.2007.03162.x10.1111/j.1365-2265.2007.03162.x18167138Search in Google Scholar

36. Ramonda R, Musacchio E, Perissinotto E, Sartori L, Punzi L, Corti MC et al. Prevalence of chondrocalcinosis in Italian subjects from northeastern Italy. The Pro. V. A. (PROgetto Veneto Anziani) study. Clin Exp Rheumatol. 2009 Nov-Dec;27(6):981-4.Search in Google Scholar

37. Singh S, Kumar D, Lal AK. Serum osteocalcin as a diagnostic biomarker for primary osteoporosis in women. J Clin Diagnostic Res. 2015 Aug; 9(8):RC04-RC07. DOI: 10.7860/JCDR/2015/14857.631810.7860/JCDR/2015/14857.6318Search in Google Scholar

38. Jabbar S, Drury J, Fordham JN, Datta HK, Francis RM, Tuck SP. Osteoprotegerin, RANKL and bone turnover in postmenopausal osteoporosis. J Clin Pathol. 2011 Apr;64(4):354-357. DOI: 10.1136/jcp.2010.08659510.1136/jcp.2010.086595Search in Google Scholar

39. Kawana K, Takahashi M, Hoshino H, Kushida K. Comparison of serum and urinary C-terminal telopeptide of type I collagen in aging, menopause and osteoporosis. Clin Chim Acta. 2012 Feb;316(1-2):109-115. DOI: 10.1016/S0009-8981(01)00742-210.1016/S0009-8981(01)00742-2Search in Google Scholar

40. Sandor R, Leucuta D, Dronca E, Niculae A, Cret V, Silaghi C et al. Low Serum Paraoxonase-1 Lactonase and Arylesterase Activities in Obese Children and Adolescents. Rev Romana Med Lab. 2015 Dec;23(4):385-95. DOI: 10.1515/rrlm-2015-003810.1515/rrlm-2015-0038Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo