1. bookVolume 28 (2020): Issue 3 (July 2020)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Metabolomic biomarkers of polycystic ovary syndrome related-obesity: a review of the literature

Published Online: 27 Jul 2020
Page range: 241 - 255
Received: 09 Dec 2019
Accepted: 13 Feb 2020
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Background and objectives: Polycystic ovary syndrome (PCOS) displays a phenotype-dependent cardio-metabolic risk. By performing a systematic search of the literature, we aimed to summarize metabolomic signatures associated with obesity in PCOS women.

Data sources and study eligibility criteria: We conducted a comprehensive search including: Embase, PubMed, and Web of Science until 31st of May 2019. We used the terms: metabolomics and polycystic ovary syndrome. We excluded the following papers: animal studies, studies that included only lean PCOS women, reviews, meta-analyses, results of interventional studies, those that did not apply metabolomic techniques.

Results: The lipid signature in obese women with PCOS showed increased levels of free fatty acids (carnitine, adipic acid, linoleic acid, oleic acid) and lower levels of lysophosphatidylcholines and glycerolphosphocholine compared with non-obese PCOS women. Regarding carbohydrate metabolism, a decrease in citric and lactic acid levels characterized obese PCOS women. Decreased lactic acid in obese PCOS women suggests augmented insulin stimulated glucose muscle use in lean, but not in obese women. Considering amino acid metabolomic markers, valine, glycine, serine, threonine, isoleucine and lysine were higher in obese PCOS women. Patients with visceral obesity presented a diminished uptake of essential amino acids, BCAA, leucine and serine in the skeletal muscle. α-ketoglutarate was significantly higher in obese women with PCOS in comparison with lean women with PCOS, distinguishing these 2 subgroups of PCOS with high ‘predictive accuracy’.

Limitations: Overall, a small number of studies have focused on the impact of obesity on the metabolic fingerprints of PCOS women. There is need for properly controlled, high-quality studies.

Conclusions: There is compelling evidence of significant alterations in carbohydrate, lipid, and amino acid metabolism in women with PCOS and obesity. Metabolomics may identify new metabolic pathways involved in PCOS and improve our understanding of the complex relation between PCOS and obesity in order to personalize PCOS therapy.

Keywords

1. Conway G, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Franks S, Gambineri A et al. The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. European Journal of Endocrinology 2014; 4 1-29. DOI: 10.1530/EJE-14-025310.1530/EJE-14-025324849517Search in Google Scholar

2. Wang R, Mol BW. The Rotterdam criteria for polycystic ovary syndrome: evidence-based criteria? Hum Reprod. 2017 Feb; 32(2):261-4. DOI: 10.1093/humrep/dew28710.1093/humrep/dew28728119448Search in Google Scholar

3. Gambineri A, Pelusi C, Vicennati V, Pagotto U, Pasquali R. Obesity and the Polycystic Ovary Syndrome. Int J Obes Relat Metab Disord. 2002 Jul;26(7):883-96. DOI: 10.1038/sj.ijo.080199410.1038/sj.ijo.080199412080440Search in Google Scholar

4. Sha, T, Wang X, Cheng W, Yan Y. A meta-analysis of pregnancy-related outcomes and complications in women with polycystic ovary syndrome undergoing IVF. Reprod Biomed Online. 2019 Aug;39(2):281-93. DOI: 10.1016/j.rbmo.2019.03.20310.1016/j.rbmo.2019.03.20331255606Search in Google Scholar

5. De Leo V, Musacchio MC, Cappelli V, Massaro MG, Morgante G, Petraglia F. Genetic, hormonal and metabolic aspects of PCOS: an update. Reprod Biol Endocrinol. 2016 Jul 16;14(1):38. DOI: 10.1186/s12958-016-0173-x10.1186/s12958-016-0173-x494729827423183Search in Google Scholar

6. Haoula Z, Ravipati S, Stekel DJ, Ortori CA, Hodgman C, Daykin C et al. Lipidomic analysis of plasma samples from women with polycystic ovary syndrome Metabolomics. 2015;11(3):657-66. DOI: 10.1007/s11306-014-0726-y10.1007/s11306-014-0726-y441915525972770Search in Google Scholar

7. Dong F, Deng D, Chen H, Cheng W, Li Q, Luo R et al. Serum metabolomics study of polycystic ovary syndrome based on UPLC-QTOF-MS coupled with a pattern recognition approach. Anal Bioanal Chem. 2015 Jun;407(16):4683-95 DOI: 10.1007/s00216-015-8670-x10.1007/s00216-015-8670-x25860656Search in Google Scholar

8. Vonica CL, Fodor A, Roman G, Mureasan AA, Farcas AD, Inceu GV, et al. Metabolic Analysis in Women with Polycystic Ovary Highlight Specific Biomarkers of Insulin Resistance. Rev.Chim.(Bucharest). 2019;70(10):3644-8 DOI: 10.37358/RC.19.10.761310.37358/RC.19.10.7613Search in Google Scholar

9. Bellver J, De Los Santos MJ, Alamá P, Castelló D, Privitera L, Galliano D et al. Day-3 embryo metabolomics in the spent culture media is altered in obese women undergoing in vitro fertilization. Fertil Steril. 2015 Jun;103(6):1407-15.e1 DOI: 10.1016/j.fertnstert.2015.03.01510.1016/j.fertnstert.2015.03.01525935493Search in Google Scholar

10. Vonica CL, Ilie IR, Socaciu C, Moraru C, Georgescu B, Farcaş A et al. Lipidomics biomarkers in women with polycystic ovary syndrome (PCOS) using ultra-high performance liquid chromatography-quadrupole time of flight electrospray in a positive ionization mode mass spectrometry. Scand J Clin Lab Invest. 2019 Oct;79(6):437-42. DOI: 10.1080/00365513.2019.165821510.1080/00365513.2019.165821531462125Search in Google Scholar

11. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016 Jul;17(7):451-9. DOI: 10.1038/nrm.2016.2510.1038/nrm.2016.25572991226979502Search in Google Scholar

12. Kosmides AK, Kamisoglu K, Calvano SE, Corbett SA, Androulakis IP. Metabolomic Fingerprinting: Challenges and Opportunities. Crit Rev Biomed Eng. 2013;41(3):205-21. DOI: 10.1615/CritRevBiomedEng.201300773610.1615/CritRevBiomedEng.2013007736Search in Google Scholar

13. Zhou B, Feng Xiao J, Tuli L. LC-MS-based metabolomics. Mol Biosyst. 2012 Feb; 8(2): 470-81. DOI: 10.1039/C1MB05350G10.1039/C1MB05350GSearch in Google Scholar

14. Lee K-M, Jeon J-Y, Lee B-J, Lee H, Choi H-K. Application of Metabolomics to Quality Control of Natural Product Derived Medicines. Biomol Ther (Seoul). 2017;25(6):559-68. DOI: 10.4062/biomolther.2016.24910.4062/biomolther.2016.249568542428605829Search in Google Scholar

15. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006-12. DOI: 10.1016/j.jclinepi.2009.06.00510.1016/j.jclinepi.2009.06.00519631508Search in Google Scholar

16. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73: 712-6. DOI: 10.1046/j.1445-2197.2003.02748.x10.1046/j.1445-2197.2003.02748.x12956787Search in Google Scholar

17. Higgins JPT SJ, Savović J, Page MJ, Hróbjartsson A, Boutron I, Reeves B, Eldridge S. A revised tool for assessing risk of bias in randomized trials. In: Chandler J, McKenzie J, Boutron I, Welch V, editors. Cochrane Methods. Cochrane Database of Systematic Reviews 2016, Issue 10 (Suppl 1).Search in Google Scholar

18. National Heart, Lung and blood institute. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies https://www.Int J Diabetes Dev Ctries Author’s personal copy nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed 28 Mar 2019.Search in Google Scholar

19. Escobar-Morreale HF, Samino S, Insenser M, Vinaixa M, Luque-Ramírez M, Lasunción MA et al. Metabolic heterogeneity in polycystic ovary 846 syndrome is determined by obesity: plasma metabolomic approach using GC- 847 MS. Clin. Chem. 2012; 58, 999-1009. DOI: 10.1373/clinchem.2011.17639610.1373/clinchem.2011.17639622427353Search in Google Scholar

20. Troisi J, Cinque C, Giugliano L, Symes S, Richards S, Adair D. Metabolomic change due to combined treatment with myo-inositol, D-chiro-inositol and glucomannan in polycystic ovarian syndrome patients: a pilot study. J Ovarian Res. 2019 Mar 23;12(1):25. DOI: 10.1186/s13048-019-0500-x10.1186/s13048-019-0500-x643102530904021Search in Google Scholar

21. Goodpaster BH, Wolfe RR, Kelley DE. Effects of obesity on substrate utilization during exercise. Obesit Res. 2002;10(7):575-84. DOI: 10.1038/oby.2002.7810.1038/oby.2002.7812105277Search in Google Scholar

22. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: A reexamination. Diabetes. 2000; 49(5):677-83. DOI: 10.2337/diabetes.49.5.67710.2337/diabetes.49.5.67710905472Search in Google Scholar

23. Di Sarra D, Tosi F, Bonin C, Fiers T, Kaufman JM, Signori C et al. Metabolic inflexibility is a feature of women with polycystic ovary syndrome and is associated with both insulin resistance and hyperandrogenism. J Clin Endocrinol Metabol. 2013;98(6):2581-8. DOI: 10.1210/jc.2013-116110.1210/jc.2013-1161Search in Google Scholar

24. Whigham LD, Butz DE, Dashti H, Tonelli M, Johnson LK, Cook ME et al. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome. Curr Metabolomics. 2014;2(4):269-78. DOI: 10.2174/2213235X0166613120323051210.2174/2213235X01666131203230512Search in Google Scholar

25. Zhao X, Xu F, Qi B, Hao S, Li Y, Li Y et al. Serum Metabolomics Study of Polycystic Ovary Syndrome Based on Liquid Chromatography−Mass Spectrometry. J. Proteome Res. 2014;13(2):1101-11 DOI: 10.1021/pr401130w10.1021/pr401130wSearch in Google Scholar

26. Sun L, Hu W, Liu Q, Hao Q, Sun B, Zhang Q et al. Metabonomics reveals plasma metabolic changes and inflammatory marker in polycystic ovary syndrome patients. J Ovarian Res. 2019 Mar 23;12(1):25.Search in Google Scholar

27. Zhao H, Zhao Y, Li T, Li M, Li J, Li R et al. Metabolism alteration in follicular niche: the nexus between intermediary metabolism, mitochondrial function, and classic polycystic ovary syndrome. Free Radic Biol Med. 2015 Sep;86:295-307. DOI: 10.1016/j.freeradbiomed.2015.05.01310.1016/j.freeradbiomed.2015.05.013Search in Google Scholar

28. Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ et al. Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J. Lipid Res. 2002, 43 (11), 1899−1907. DOI: 10.1194/jlr.M200189-JLR20010.1194/jlr.M200189-JLR200Search in Google Scholar

29. Ntambi JM. The regulation of stearoyl-CoA desaturase (SCD). Prog. Lipid Res. 1995, 34 (2), 139−150. DOI: 10.1016/0163-7827(94)00010-J10.1016/0163-7827(94)00010-JSearch in Google Scholar

30. Dobrzyn, A, Ntambi JM. The role of stearoyl-CoA desaturase in body weight regulation. Trends Cardiovasc. Med. 2004, 14 (2), 77− 81. DOI: 10.1016/j. tcm.2003.12.005Search in Google Scholar

31. Brown JM, Chung, S, Sawyer JK, Degirolamo C, Alger HM, Nguyen TM et al. Combined therapy of dietary fish oil and stearoyl-CoA desaturase 1 inhibition prevents the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol. 2010 Jan;30(1):24-30. DOI: 10.1161/ATVBAHA.109.19803610.1161/ATVBAHA.109.198036279629319834103Search in Google Scholar

32. Mar-Heyming R, Miyazaki M, Weissglas-Volkov D, Kolaitis NA, Sadaat N, Plaisier C et al. Association of stearoyl-CoA desaturase 1 activity with familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 2008 Jun;28(6):1193-9. DOI: 10.1161/ATVBAHA.107.16015010.1161/ATVBAHA.107.160150275876818340007Search in Google Scholar

33. Perez-Chacon G, Astudillo AM, Ruiperez V, Balboa MA, Balsinde J. Signaling role for lysophosphatidylcholine acyltransferase 3 in receptor-regulated arachidonic acid reacylation reactions in human monocytes. J. Immunol. 2010; 184 (2), 1071−8. DOI: 10.4049/jimmunol.090225710.4049/jimmunol.090225720018618Search in Google Scholar

34. Barber MN, Risis S, Yang C, Meikle PJ, Staples M, Febbraio MA et al. Plasma Lysophosphatidylcholine Levels Are Reduced in Obesity and Type 2 Diabetes. PLoS One. 2012;7(7):e41456. DOI: 10.1371/journal. pone.0041456Search in Google Scholar

35. Chang AY, Lalia AZ, Jenkins GD, Dutta T, Carter RE, Singh RJ et al. Combining a Nontargeted and Targeted Metabolomics Approach to Identify Metabolic Pathways Significantly Altered in Polycystic Ovary Syndrome. Metabolism. 2017 Jun;71:52-63. DOI: 10.1016/j.metabol.2017.03.00210.1016/j.metabol.2017.03.002552053928521878Search in Google Scholar

36. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012 Dec; 33(6):981-1030. DOI: 10.1210/er.2011-103410.1210/er.2011-1034539315523065822Search in Google Scholar

37. Wang W, Wang S, Tan S, Wen M, Qian Y, Zeng X et al. Detection of urine metabolites in polycystic ovary syndrome by UPLC triple-TOF-MS. Clin Chim Acta. 2015 Aug 25;448:39-47. DOI: 10.1016/j.cca.2015.06.00810.1016/j.cca.2015.06.00826093338Search in Google Scholar

38. Zhao Y, Fu L, Li R, Wang LN, Yang Y, Liu NN et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Medicine. 2012 Nov 30;10:153. DOI: 10.1186/1741-7015-10-15310.1186/1741-7015-10-153359923323198915Search in Google Scholar

39. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011 Apr;17(4):448-53. Epub 2011 Mar 20. DOI: 10.1038/nm.230710.1038/nm.2307312661621423183Search in Google Scholar

40. Martin FP, Montoliu I, Collino S, Scherer M, Guy P, Tavazzi I, et al. Topographical body fat distribution links to amino acid and lipid metabolism in healthy non-obese women. LoS One. 2013 Sep 11;8(9):e73445. DOI: 10.1371/journal.pone.007344510.1371/journal.pone.0073445377064024039943Search in Google Scholar

41. Chand AL, Legge M. 2011. Amino acid transport system L activity in developing mouse ovarian follicles. Hum Reprod. 2011 Nov;26(11):3102-8. DOI: 10.1093/humrep/der29810.1093/humrep/der29821914669Search in Google Scholar

42. She P, Olson KC, Kadota Y, Inukai A, Shimomura Y, Hoppel CL, et al Leucine and protein metabolism in obese Zucker rats, PLoS One. 2013;8(3):e59443.. DOI: 10.1371/journal.pone.005944310.1371/journal.pone.0059443360388323527196Search in Google Scholar

43. Li X, Wang Y, Tang W, Liu C, Chen Y, Zheng Z. Relationship between ADIPOQ polymorphisms and polycystic ovary syndrome: a meta-analysis involving 6,735 subjects. Int J Clin Exp Med 2017;10(2):1828-39.Search in Google Scholar

44. Halama A, Aye MM, Dargham SR., Kulinski M, Suhre K, Atkin SL. Metabolomics of Dynamic Changes in Insulin Resistance Before and After Exercise in PCOS. Front Endocrinol (Lausanne). 2019 Feb 27;10:116. DOI: 10.3389/fendo.2019.0011610.3389/fendo.2019.00116640083430873121Search in Google Scholar

45. Rodríguez-Gallego E, Guirro M, Riera-Borrull M, Hernández-Aguilera A, Mariné-Casadó R, Fernández-Arroyo S, et al. Mapping of the circulating metabolome reveals α-ketoglutarate as a predictor of morbid obesity-associated non-alcoholic fatty liver disease. Int J Obes (Lond). 2015 Feb;39(2):279-87. DOI: 10.1038/ijo.2014.5310.1038/ijo.2014.5324675715Search in Google Scholar

46. Gaster M, Nehlin JO, Minet AD. Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects: marker or maker of the diabetic pheno-type? Arch Physiol Biochem. 2012 Jul;118(3):156-89. DOI: 10.3109/13813455.2012.65665310.3109/13813455.2012.65665322385297Search in Google Scholar

47. Jimenez PT, Frolova AI, Chi MM, Grindler NM, Will-cockson AR, Reynolds KA, et al. DHEA-mediated inhibition of the pentose phosphate pathway alters oocyte lipid metabolism in mice. Endocrinology. 2013 Dec;154(12):4835-44. DOI: 10.1210/en.2012-214010.1210/en.2012-2140383606524036000Search in Google Scholar

48. Guan HP, Goldstein JL, Brown MS, Liang G. Accelerated fatty acid oxidation in muscle averts fasting-induced hepatic steatosis in SJL/J mice. J Biol Chem. 2009 Sep 4;284(36):24644-52. DOI: 10.1074/jbc.M109.03439710.1074/jbc.M109.034397278205319581301Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo