1. bookVolume 28 (2020): Issue 2 (April 2020)
Journal Details
First Published
08 Aug 2013
Publication timeframe
4 times per year
access type Open Access

Implications of visfatin genetic variants in the metabolic profile of the Romanian pediatric population

Published Online: 04 May 2020
Page range: 163 - 174
Received: 07 Sep 2019
Accepted: 03 Feb 2020
Journal Details
First Published
08 Aug 2013
Publication timeframe
4 times per year

Background: Conflictual results regarding the relationship between plasmatic level of visfatin and obesity could be explained by the influence of the gene variants involved in the synthesis or action of these hormones.

Objectives: The present study examined the potential implication of single nucleotide polymorphisms (SNPs) of nicotinamide phosphoribosyltransferase (NAMPT) gene that encodes visfatin, in obesity, in a Romanian pediatric population.

Method: A case-control study was conducted on a group of 213 children, divided into two: the case group - 130 overweight and obese children with BMI >1 SD, and the control group - 83 children with normal BMI. The variables analyzed were age, sex, anthropometric parameters, body composition based on bioimpedance analysis, lipid profile, visfatin and insulin plasmatic levels, rs4730153 and rs2302559 visfatin SNPs.

Results: Significant associations were not found between rs4730153 and rs2302559 visfatin SNPs and obesity. Regarding lipid metabolism, there are statistically significant differences between triglyceride levels according to NAMPT rs2302559 genotypes (p=0.045), with heterozygous genotype having the highest level of triglycerides, and also between cholesterol levels according to NAMPT rs4730153 genotypes (p=0.030), with carriers of heterozygote genotype having the highest level of cholesterol. There is a statistically significant difference between the studied parameters in the investigated groups, regarding cholesterol, in carrier of wild-type genotype of NAMPT rs2302559 (p=0.040) and carrier of wild-type genotype of NAMPT rs4730153 (p=0.036). We observed no association of NAMPT rs4730153 and rs2302559 with visfatin levels in the studied groups. Visfatin level was lower in the case group and was correlated with weight (p=0.042), abdominal circumference (p=0.010), waist to height ratio (p=0.040), but not with the elements of the metabolic profile.

Conclusion: NAMPT rs2302559 and rs4730153 polymorphisms do not seem to have a major impact in the development of obesity in children, however there may be an association with lipid profile, but further studies are needed..


1. Cinteza EE, Cinteza M. Biomarkers in Obesity. Rev Romana Med Lab. 2018;26(3):353-8. DOI: 10.2478/rrlm-2018-002710.2478/rrlm-2018-0027Search in Google Scholar

2. Duicu C, Mărginean CO, Voidăzan S, Tripon F, Bănescu C. FTO rs 9939609 SNP Is Associated With Adiponectin and Leptin Levels and the Risk of Obesity in a Cohort of Romanian Children Population. Medicine (Baltimore). 2016 May;95(20):e3709. DOI: 10.1097/MD.000000000000370910.1097/MD.0000000000003709490242827196486Search in Google Scholar

3. WHO | Commission on Ending Childhood Obesity. WHO [cited 2019 August 28];Available from: http://www.who.int/end-childhood-obesity/en/Search in Google Scholar

4. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes 2012;7:284-94 DOI: 10.1111/j.2047-6310.2012.00064.x10.1111/j.2047-6310.2012.00064.x22715120Search in Google Scholar

5. Pascanu I, Pop R, Barbu CG, Dumitrescu CP, Gherlan I, Marginean O, et al. development of synthetic growth charts for romanian population. Acta Endocrinol (Bu-char). 2016 Jul-Sep;12(3):309-18. DOI: 10.4183/aeb.2016.30910.4183/aeb.2016.309653525931149106Search in Google Scholar

6. Popa S, Moţa M, Popa A, Moţa E, Serafinceanu C, Guja C, et al. Prevalence of overweight/obesity, abdominal obesity and metabolic syndrome and atypical cardiometabolic phenotypes in the adult Romanian population: PREDATORR study. J Endocrinol Invest 2016;39(9): 1045-53. DOI: 10.1007/s40618-016-0470-410.1007/s40618-016-0470-427126310Search in Google Scholar

7. Chirita-Emandi A, Barbu CG, Cinteza EE, Chesaru BI, Gafencu M, Mocanu V, et al. Overweight and Under-weight Prevalence Trends in Children from Romania- Pooled Analysis of Cross-Sectional Studies between 2006 and 2015. Obes Facts. 2016;9(3):206-20. DOI: 10.1159/00044417310.1159/000444173564483727319017Search in Google Scholar

8. Mechanick JI, Hurley DL, Garvey WT. Adiposity-based chronic disease as a new diagnostic term: The American Association of Clinical Endocrinologists and American College of Endocrinology Position statement. Endocr Pract. 2017 Mar;23(3):372-78. DOI: 10.4158/EP161688.PS10.4158/EP161688.PS27967229Search in Google Scholar

9. Leal Vde O, Mafra D. Adipokines in obesity. Clin Chim Acta. 2013 Apr;419:87-94. DOI: 10.1016/j. cca.2013.02.003Search in Google Scholar

10. Bahíllo-Curieses MP, Hermoso-López F, Martínez-Sopena MJ, Cobreros-García P, García-Saseta P, Tríguez-García M, et al. Prevalence of insulin resistance and impaired glucose tolerance in a sample of obese Spanish children and adolescents. Endocrine. 2012 Apr;41(2):289-95. DOI: 10.1007/s12020-011-9540-810.1007/s12020-011-9540-821964644Search in Google Scholar

11. Damiani D, Kuba VM, Cominato L, Damiani D, Dichtchekenian V, Menezes HC. Metabolic syndrome in children and adolescents: doubts about terminology but not about cardiometabolic risks. Arq Bras Endocrinol Metabol. 2011 Nov;55(8):576-82. DOI: 10.1590/S0004-2730201100080001110.1590/S0004-2730201100080001122218439Search in Google Scholar

12. Stastny J, Bienertova-Vasku J, Vasku A. Visfatin and its role in obesity development. Diabetes Metab Syndr. 2012 Apr-Jun;6(2):120-4. DOI: 10.1016/j. dsx.2012.08.011Search in Google Scholar

13. Garten A, Petzold S, Barnikol-Oettler A, Körner A, Thasler WE, Kratzsch J, et al. Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin) is constitutively released from human hepatocytes. Biochem Biophys Res Commun. 2010 Jan;391(1):376-81. DOI: 10.1016/j.bbrc.2009.11.06610.1016/j.bbrc.2009.11.06619912992Search in Google Scholar

14. Costford SR, Bajpeyi S, Pasarica M, Albarado DC, Thomas SC, Xie H, et al. Skeletal muscle NAMPT is induced by exercise in humans. Am J Physiol Endocrinol Metab. 2010 Jan;298(1):E117-26. DOI: 10.1152/ajpendo.00318.200910.1152/ajpendo.00318.2009280610619887595Search in Google Scholar

15. Martínez Larrad MT, Corbatón Anchuelo A, Fernández Pérez C, Pérez Barba M, Lazcano Redondo Y, Serra-no Ríos M, et al. Obesity and Cardiovascular Risk: Variations in Visfatin Gene Can Modify the Obesity Associated Cardiovascular Risk. Results from the Segovia Population Based-Study. Spain. PloS One. 2016 May;11(5):e0153976. DOI: 10.1371/journal. pone.0153976Search in Google Scholar

16. Alkhzouz C, Miclea D, Farcas M, Bucerzan S, Cabau G, Popp RA. Is there a correlation between GAD2 gene -243 A>G polymorphism and obesity? Rev Romana Med Lab. 2019;27(4):413-20. DOI: 10.2478/rrlm-2019-003310.2478/rrlm-2019-0033Search in Google Scholar

17. Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Science. 2016 Jun;130(12):943-86. DOI: 10.1042/CS2016013610.1042/CS2016013627154742Search in Google Scholar

18. World Health Organization. Growth reference 5-19 years. 2007. WHO [cited 2019 August 28]; Available from: http://www.who.int/growthref/who2007_bmi_for_age/en/Search in Google Scholar

19. Prader A, Largo RH, Molinari L, Issler C. Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. Helv Paediatr Acta Suppl. 1989 Jun;52:1-125.Search in Google Scholar

20. National Health and Nutrition Examination Survey. Anthropometry Procedures Manual. 2017. Available from: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/manuals/2017_Anthropometry_Procedures_Manual.pdfSearch in Google Scholar

21. WHO. Waist circumference and waist-hip ratio. WHO [cited 2019 August 28]; Available from: http://www.who.int/nutrition/publications/obesity/WHO_report_waistcircumference_and_waisthip_ratio/en/Search in Google Scholar

22. Martin-Calvo N, Moreno-Galarraga L, Martinez-Gonzalez MA. Association between Body Mass Index, Waist-to-Height Ratio and Adiposity in Children: A Systematic Review and Meta-Analysis. Nutrients. 2016;8(8), pii: E512. DOI: 10.3390/nu808051210.3390/nu8080512499742527556485Search in Google Scholar

23. Tanita Corporation of America Inc. „TANITA - Total Body Composition Analyzer SC-331S - Instruction Manual. 2016.Search in Google Scholar

24. Mihai G, Gasparik AI, Pascanu IM, Cevei M, Hutanu A, Pop RM. The influence of Visfatin, RBP-4 and insulin resistance on bone mineral density in women with treated primary osteoporosis. Aging Clin Exp Res. 2019 Jun;31(6):889-95. DOI: 10.1007/s40520-019-01206-610.1007/s40520-019-01206-631054116Search in Google Scholar

25. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta−cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985 Jul;28(7):412-9. DOI: 10.1007/BF0028088310.1007/BF002808833899825Search in Google Scholar

26. Andrade MI, Oliveira JS, Leal VS, Lima NM, Costa EC, Aquino NB, et al. Identification of cutoff points for Homeostatic Model Assessment for Insulin Resistance index in adolescents: systematic review. Rev Paul Pediatr. 2016 Jun;34(2):234-42. DOI: 10.1016/j. rppede.2016.01.004Search in Google Scholar

27. Ricco RC, Ricco RG, Almeida CAN, Ramos APP. Comparative study of risk factors among children and adolescents with an anthropometric diagnosis of over-weight or obesity. Rev Paul Pediatr. 2010;28(4):320-5. DOI: 10.1590/S0103-0582201000040000610.1590/S0103-05822010000400006Search in Google Scholar

28. Castro AV, Kolka CM, Kim SP, Bergman RN. Obesity, insulin resistance and comorbidities? Mechanisms of association. Arq Bras Endocrinol Metabol. 2014 Aug;58(6):600-9. DOI: 10.1590/0004-273000000322310.1590/0004-2730000003223442382625211442Search in Google Scholar

29. Kostovski M, Simeonovski V, Mironska K, Tasic V, Gucev Z. Metabolic Profiles in Obese Children and Adolescents with Insulin Resistance. Open Access Maced J Med Sci. 2018 Mar;6(3):511-8 DOI: 10.3889/oamjms.2018.09710.3889/oamjms.2018.097587437529610610Search in Google Scholar

30. Pinhas-Hamiel O, Lerner-Geva L, Copperman NM, Jacobson MS. Lipid and insulin levels in obese children: changes with age and puberty. Obes Silver Spring Md. 2007 Nov;15(11):2825-31. DOI: 10.1038/oby.2007.33510.1038/oby.2007.33518070774Search in Google Scholar

31. Romualdo MC, Nóbrega FJ, Escrivão MA. Insulin resistance in obese children and adolescents. J Pediatr (Rio J). 2014 Nov-Dec;90(6):600-7. DOI: 10.1016/j. jped.2014.03.005Search in Google Scholar

32. Serrano HM, Carvalho GQ, Pereira PF, Peluzio Mdo C, Franceschini Sdo C, Priore SE. Body composition, biochemical and clinical changes of adolescents with excessive adiposity. Arq Bras Cardiol. 2010 Oct;95(4):464-72. DOI: 10.1590/S0066-782X201000500010910.1590/S0066-782X2010005000109Search in Google Scholar

33. Chang YH, Chang DM, Lin KC, Shin SJ, Lee YJ. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review. Diabetes Metab Res Rev. 2011 Sept;27(6):515-27. DOI: 10.1002/dmrr.120110.1002/dmrr.120121484978Search in Google Scholar

34. Kolsgaard ML, Wangensteen T, Brunborg C, Joner G, Holven KB, Halvorsen B, et al. Elevated visfatin levels in overweight and obese children and adolescents with metabolic syndrome. Scand J Clin Lab Invest. 2009;69:858-64. DOI: 10.3109/0036551090334867710.3109/0036551090334867719929281Search in Google Scholar

35. Salama HM, Galal A, Motawie AA, Kamel AF, Ibrahim DM, Aly AA, et al. Adipokines Vaspin and Visfatin in Obese Children. Open Access Maced J Med Sci. 2015 Dec;3(4):563-6. DOI: 10.3889/oamjms.2015.12310.3889/oamjms.2015.123487788827275288Search in Google Scholar

36. Jian WX, Luo TH, Gu YY, Zhang HL, Zheng S, Dai M, et al. The visfatin gene is associated with glucose and lipid metabolism in a Chinese population. Diabet Med J Br Diabet Assoc. 2006 Sept;23(9):967-73. DOI: 10.1111/j.1464-5491.2006.01909.x10.1111/j.1464-5491.2006.01909.x16922702Search in Google Scholar

37. Li RZ, Ma Xn, Hu XF, Kang SX, Chen SK, Cianflone K, et al. Elevated visfatin levels in obese children are related to proinflammatory factors. J Pediatr Endocrinol Metab. 2013;26(1-2):111-8.Search in Google Scholar

38. Filippatos TD, Derdemezis CS, Kiortsis DN, Tselepis AD, Elisaf MS. Increased plasma levels of visfatin/ pre-B cell colony-enhancing factor in obese and over-weight patients with metabolic syndrome. J Endocrinol Invest. 2007 Apr;30(4):323-6. DOI: 10.1007/BF0334630010.1007/BF0334630017556870Search in Google Scholar

39. Ooi SQ, Chan RM, Poh LK, Loke KY, Heng CK, Chan YH, et al. Visfatin and its genetic variants are associated with obesity-related morbidities and cardiometabolic risk in severely obese children. Pediatr Obes. 2014 Apr;9(2):81-91. DOI: 10.1111/j.2047-6310.2013.00149.x10.1111/j.2047-6310.2013.00149.x23447513Search in Google Scholar

40. Stastny J, Bienertova-Vasku J, Tomandl J, Tomandlova M, Zlamal F, Forejt M, et al. Association of genetic variability in selected regions in visfatin (NAMPT) gene with anthropometric parameters and dietary composition in obese and non-obese Central-European population. Diabetes Metab Syndr. 2013 Jul-Sep;7(3):166-71. DOI: 10.1016/j.dsx.2013.06.00110.1016/j.dsx.2013.06.00123953183Search in Google Scholar

41. Lai A, Chen W, Helm K. Effects of visfatin gene polymorphism RS4730153 on exercise-induced weight loss of obese children and adolescents of Han Chinese. Int J Biol Sci. 2013;9(1):16-21 DOI: 10.7150/ijbs.491810.7150/ijbs.4918353553023289013Search in Google Scholar

42. Körner A, Böttcher Y, Enigk B, Kiess W, Stumvoll M, Kovacs P. Effects of genetic variation in the visfatin gene (PBEF1) on obesity, glucose metabolism, and blood pressure in children. Metabolism. 2007 Jun;56(6):772-7. DOI: 10.1016/j.metabol.2007.01.00910.1016/j.metabol.2007.01.00917512309Search in Google Scholar

43. Ferrari G, Lima Rodrigues J, Fernandes I, Bueno Jr C. Association between rs4730153 Gene SNP and fasting glucose, triglyceride, HDL and body mass index levels in overweight brazilian adults. Int J Cardiovasc Sci. 2016;29(6):471-76. DOI: 10.5935/2359-4802.2016006710.5935/2359-4802.20160067Search in Google Scholar

44. Duicu C. Genetic testing in pediatrics - a narrative essay of challenges and possibilities in Romania. Rev Romana Med Lab. 2019;27(4):355-9. DOI: 10.2478/rrlm-2019-004110.2478/rrlm-2019-0041Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo