1. bookVolume 28 (2020): Issue 2 (April 2020)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Antimicrobial activity of different substituted meso-porphyrin derivatives

Published Online: 04 May 2020
Page range: 205 - 216
Received: 09 Oct 2019
Accepted: 29 Jan 2020
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

The increasing resistance against classical antibiotic treatment forces the researchers to develop novel non-toxic antimicrobial agents. The aim of this study was to determine the antimicrobial properties of seven different porphyrins having distinctive hydrophobicity/hydrophilicity: P1 meso-tetra(4-methoxy-phenyl)porphyrin, P2 Zn(II)-meso-5,10,15,20-tetrapyridylporphyrin, P3 meso-tetra(p-tolyl)porphyrin, P4 5,10,15,20-tetraphenylporphyrin; P5 (5,10,15,20-tetraphenylporphinato) dichlorophosphorus(V) chloride, P6 5,10,15,20-tetrakis-(N-methyl-4-pyridyl) porphyrin-Zn(II) tetrachloride, P7 Zn(II)-5,10,15,20-meso-tetrakis-(4-aminophenyl)porphyrin. The meso-porphyrin derivatives were screened for their antimicrobial activity against six reference strains: Streptococcus pyogenes ATCC 19615, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603, Pseudomonas aeruginosa ATCC27853 and Candida albicans ATCC 10231. The antimicrobial activity of these samples was evaluated by the agar disk diffusion method and dilution method, with the determination of the minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC) and the minimum fungicidal concentration (MFC). The most significant result is provided by the water-soluble P5 manifesting an obvious antimicrobial activity against Streptococcus pyogenes. On the other hand, P6 is a moderately active derivative against Streptococcus pyogenes and Escherichia coli and P7 presents moderate activity against Streptococcus pyogenes and Staphylococcus aureus. All the tested porphyrin bases, presenting hydrophobic character, have no antimicrobial activity under the investigated conditions. The common characteristics of the porphyrins that act as promising antimicrobial agents in the non-irradiated methods are: the cationic nature, the increased hydrophilicity and the presence of both amino functional groups grafted on the porphyrin ring and the coordination with Zn or phosphorus in the inner core.

Keywords

1. Taylor P, Stapleton P, Paul Luzio J. New ways to treat bacterial infections. Drug Discov Today. 2002 Nov 1;7(21):1086-91. DOI: 10.1016/S1359-6446(02)02498-410.1016/S1359-6446(02)02498-4Search in Google Scholar

2. Tomé J, Neves M, Tomé A, Cavaleiro J, Soncin M, Magaraggia M et al. Synthesis and Antibacterial Activity of New Poly-S-lysine−Porphyrin Conjugates. JJ Med Chem. 2004 Dec 16;47(26):6649-52. DOI: 10.1021/jm040802v10.1021/jm040802v15588101Search in Google Scholar

3. Amos-Tautua B, Songca S, Oluwafemi O. Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules. 2019; 24(13):2456. DOI: 10.3390/molecules2413245610.3390/molecules24132456665091031277423Search in Google Scholar

4. YuanY, Liu ZQ, Jin H, Sun S, Liu TJ, Wang X, et al. Photodynamic antimicrobial chemotherapy with the novel amino acid-porphyrin conjugate 4I: In vitro and in vivo studies. PLOS ONE, 2017,12(5): e0176529. DOI: 10.1371/journal.pone.017652910.1371/journal.pone.0176529542662928493985Search in Google Scholar

5. Gyulkhandanyan GV, Ghazaryan RK, Paronyan MH, Ulikhanyan GI, Gyulkhandanyan AG, Sahakyan L A. Mechanisms of low-Light Therapy VII edited by Michael R. Hamblin, Juanita Anders, James D. Carroll, Proc. of SPIE. 2012;8211:821107.Search in Google Scholar

6. Ramesh J, Sujatha S, Arunkumar C. Synthesis, structure, electrochemical, DNA interaction and antimicrobial studies of fluorinated trans-dicationic pyridinium porphyrins. RSC Advances. 2016;6(68):63271-85. DOI: 10.1039/C6RA09148B10.1039/C6RA09148BSearch in Google Scholar

7. Caminos D, Durantini E. Photodynamic inactivation of Escherichia coli immobilized on agar surfaces by a tricationic porphyrin. Bioorg Med Chem. 2006 Jun 15;14(12):4253-9. DOI: 10.1016/j.bmc.2006.01.05810.1016/j.bmc.2006.01.05816481175Search in Google Scholar

8. Zhao S, Chen N, Zhang H, Zhang J, Li Z. Microwave Synthesis and Antibacterial Activity of Novel Asymmetric Porphyrin Metal Complexes from Substituted Piperonal. Chinese Journal of Applied Chemistry 2015; 32(5):542-546.Search in Google Scholar

9. Sol V, Branland P, Chaleix V, Granet R, Guilloton M, Lamarche F, et al. Amino porphyrins as photo inhibitors of Gram-positive and -negative bacteria. Bioorganic & Medicinal Chemistry Letters. 2004;14(16):4207-4211. DOI: 10.1016/j.bmcl.2004.06.01610.1016/j.bmcl.2004.06.01615261271Search in Google Scholar

10. Krychowiak M, Kawiak A, Narajczyk M, Borowik A, Królicka A. Silver Nanoparticles Combined With Naphthoquinones as an Effective Synergistic Strategy Against Staphylococcus aureus. Front Pharmacol. 2018 Jul 26;9:816 DOI: 10.3389/fphar.2018.0081610.3389/fphar.2018.00816609496830140226Search in Google Scholar

11. Lascu A, Palade A, Birdeanu M. Procaine detection using hybrids of cobalt-metalloporphyrin with gold and silver nanoparticles. Journal of the Chemical Society of Pakistan. 2019;41(1):43-51.10.52568/000725/JCSP/41.01.2019Search in Google Scholar

12. Palade A. Comparative Diclofenac Detection For Chronic Toxicity Levels Using Water Soluble Zn-Metalloporphyrin, Gold Nanoparticles And Their Hybrid. Farmacia. 2018; 66(3):468-76. DOI: 10.31925/farmacia.2018.3.1110.31925/farmacia.2018.3.11Search in Google Scholar

13. Fagadar-Cosma E, Lascu A, Shova S, Zaltariov M, Birdeanu M, Croitor L, et al. X-ray Structure Elucidation of a Pt-Metalloporphyrin and Its Application for Obtaining Sensitive AuNPs-Plasmonic Hybrids Capable of Detecting Triiodide Anions. Int J Mol Sci. 2019 Feb; 20(3): 710. DOI: 10.3390/ijms2003071010.3390/ijms20030710638707330736413Search in Google Scholar

14. Alexandrova R, Kalfin R, Tudose R, Fagadar-Cosma E. Comparative cytotoxicity assays performed using a free porphyrin and its Zn(II), Co(II) and Cu() Complexes. Influence of optical and aggregation properties. Studia Universitatis Babeș-Bolyai Chemia. 2018;63(4):65-77. DOI: 10.24193/subbchem.2018.4.0510.24193/subbchem.2018.4.05Search in Google Scholar

15. Lascu A, Birdeanu M, Taranu B, Fagadar-Cosma E. Hybrid Mn-Porphyrin-Nanogold Nanomaterial Applied for the Spectrophotometric Detection of β-Carotene. Journal of Chemistry. 2018; 2018:1-11. DOI: 10.1155/2018/532356110.1155/2018/5323561Search in Google Scholar

16. Fagadar-Cosma E, Enache C, Tudose R, Armeanu I, Mosoarca E, Vlascici D, et al. UV-Vis and fluorescence spectra of meso-tetraphenylporphyrin and meso-tetrakis-(4-methoxyphenyl) porphyrin in THF and THF-water systems. The influence of pH. Revista de Chimie. 2007;58(5):451-5.Search in Google Scholar

17. Fagadar-Cosma E, Enache C. Armeanu I, Fagadar-Cosma G. Comparative Investigations of the Absorption and Fluorescence Spectra of Tetrapyridylporphyrine and Zn (II) Tetrapyridylporphyrine. Dig J Nanomat Biostruct. 2007; 2:175-83.Search in Google Scholar

18. Fagadar-Cosma E, Enache C, Armeanu I. Dascalu D, Fagadar-Cosma G, Vasile M, et al. The influence of pH over topography and spectroscopic properties of silica hybrid materials embedding meso-tetratolylporphyrin. Mater Res Bull. 2009; 44:426-431. DOI: 10.1016/j.materresbull.2008.04.02310.1016/j.materresbull.2008.04.023Search in Google Scholar

19. Vlascici D, Fagadar-Cosma E, Bizerea-Spiridon O. A New Composition for Co(II)-porphyrin-based Membranes Used in Thiocyanate-selective Electrodes. Sensors. 2006; 6(8):892-900. DOI: 10.3390/s608089210.3390/s6080892Search in Google Scholar

20. Fagadar-Cosma E, Badea V, Fagadar-Cosma G, Palade A, Lascu A, Fringu I, et al. Trace Oxygen Sensitive Material Based on Two Porphyrin Derivatives in a Heterodimeric Complex. Molecules. 2017; 22(10):1787. DOI: 10.3390/molecules2210178710.3390/molecules22101787615140929065493Search in Google Scholar

21. Dudás Z, Fagadar-Cosma E, Len A, Románszki L, Almásy L, Vlad-Oros B, et al. Improved Optical and Morphological Properties of Vinyl-Substituted Hybrid Silica Materials Incorporating a Zn-Metalloporphyrin. Materials. 2018;11(4):565. DOI: 10.3390/ma1104056510.3390/ma11040565595144929642404Search in Google Scholar

22. Bettelheim A, White B, Raybuck S, Murray R. Electrochemical polymerization of amino-, pyrrole-, and hydroxy-substituted tetraphenylporphyrins. Inorganic Chemistry. 1987; 26(7):1009-17. DOI: 10.1021/ic00254a01110.1021/ic00254a011Search in Google Scholar

23. Araghi M, Mirkhani V, Moghadam M, Tangestaninejad S, Mohammdpoor-Baltork I. Synthesis and characterization of a new porphyrin-polyoxometalate hybrid material and investigation of its catalytic activity. Dalton Transactions. 2012;41(10):3087. DOI: 10.1039/c2dt11865c10.1039/c2dt11865c22286169Search in Google Scholar

24. Ledeţi I, Bercean V, Alexa A, Şoica C, Şuta L, Dehe-lean C et al. Preparation and Antibacterial Properties of Substituted 1,2,4-Triazoles. Journal of Chemistry. 2015; 2015:1-5. DOI: 10.1155/2015/87934310.1155/2015/879343Search in Google Scholar

25. Boda FA, Mare A, Szabó ZI, Berta L, Curticapean A, Dogaru M, et al. Antibacterial activity of selected snake venoms on pathogenic bacterial strains. Rev Romana Med Lab. 2019; 27(3):305-17. DOI: 10.2478/rrlm-2019-001510.2478/rrlm-2019-0015Search in Google Scholar

26. Muntean D, Licker M, Alexa E, Popescu I, Jianu C, Buda V, et al. Evaluation of essential oil obtained from Mentha×piperita L. against multidrug-resistant strains. Infect Drug Resist. 2019 Sep 13;12:2905-14. DOI: 10.2147/IDR.S21814110.2147/IDR.S218141675151131686869Search in Google Scholar

27. Corina D, Bojin F, Ambrus R, Muntean D, Soica C, Paunescu V, et al. Physico-chemical and biological evaluation of flavonols: fisetin, quercetin and kaempferol alone and incorporated in beta cyclodextrins. Anticancer Agents Med Chem. 2017;17(4):615-26. DOI: 10.2174/187152061666616062110530610.2174/187152061666616062110530627338298Search in Google Scholar

28. Danciu C, Muntean D, Alexa E, Farcas C, Oprean C, Zupko I, et al. Phytochemical Characterization and Evaluation of the Antimicrobial, Antiproliferative and Pro-Apoptotic Potential of Ephedra alata Decne. Hydroalcoholic Extract against the MCF-7 Breast Cancer Cell Line. Molecules. 2018; 24(1):13. DOI: 10.3390/molecules2401001310.3390/molecules24010013633752630577537Search in Google Scholar

29. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing 2013; Twenty third informational supplement M 100-S23.Wayne PA: CLSI.Search in Google Scholar

30. EUCAST-AFST. Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope W. EUCAST technical note on the EUCAST definitive document EDef 7.2: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin Microbiol Infect. 2012;18:E246-E247. DOI: 10.1111/j.1469-0691.2012.03880.x10.1111/j.1469-0691.2012.03880.x22563750Search in Google Scholar

31. Tahlan S, Kumar S, Ramasamy K, Lim S, Shah S, Mani V et al. In-silico molecular design of heterocyclic benzimidazole scaffolds as prospective anticancer agents. BMC Chemistry. 2019;13(1). DOI: 10.1186/s13065-019-0608-510.1186/s13065-019-0608-5666177231384837Search in Google Scholar

32. Tahlan S, Kumar S, Ramasamy K, Lim SM, Ali Shah SA, Mani V, et al. Design, synthesis and biological profile of heterocyclic benzimidazole analogues as prospective antimicrobial and antiproliferative agents. BMC Chemistry 2019;13(50). DOI: 10.1186/s13065-019-0567-x10.1186/s13065-019-0567-x666175831384798Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo