1. bookVolume 27 (2019): Issue 2 (April 2019)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Emergence of rotavirus G9 in 2012, as the dominant genotype in Turkish children with diarrhea, in a university hospital in Ankara

Published Online: 02 May 2019
Page range: 209 - 218
Received: 05 Nov 2018
Accepted: 16 Mar 2019
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Introduction: Rotavirus infection is a major cause of morbidity and mortality in infants and young children with diarrhea throughout the world.

Material and Methods: In this study, we aimed to determine the detection rate of rotavirus infection in 181 children less than 5 years of age presenting with acute gastroenteritis and admitted to a tertiary care hospital in Ankara, Turkey, from April to November 2012. We documented the epidemiological data by elucidating the prevalent genotypes. Stool specimens were collected, and rotavirus antigen in the samples was detected using ELISA. G and P genotypes were determined by RT-PCR via type specific primers. The nucleotide sequence of the concerned genes was determined by Sanger sequencing and phylogenetic analysis was performed by neighbor-joining method.

Results: Of the 181 samples, 28 (15.5%) were positive for the rotavirus antigen. Twenty-seven samples were positive for G genotypes and 21 were positive for P genotypes. Genotypes G1 (7.1%), G2 (7.1%), G3 (7.1%), G4 (3.6%), G9 (71.5%) and P4 (3.6%), P8 (71.4%) were identified. Genotype G9P[8] (50%) was predominant in the combination of G and P genotypes. Most of the G9 strains of this study formed an independent cluster in Lineage III, except two strains which clustered with an Ethiopian G9 strain of 2012.

Conclusions: It seems that during 2012 season, genotype G9P[8] increased significantly in Ankara due to a new circulating strain of G9.

Keywords

1. Lanata CF, Fischer-Walker CL, Olascoaga AC, Torres CX, Aryee MJ, Black RE, et al. Global causes of diarrheal disease mortality in children <5 years of age: a systmeatic review. PLoS One 2013; 8: e72788. DOI: 10.1371/journal.pone.007278810.1371/journal.pone.0072788376285824023773Search in Google Scholar

2. Zheng S, Yu F, Chen X, Cui D, Cheng Y, Xie G, et al. Enteropathogens in children less than 5 years of age with acute diarrhea: a 5-year surveillance study in the Southeast Coast of China. BMC Infect Dis 2016; 16: 434. DOI: 10.1186/s12879-016-1760-310.1186/s12879-016-1760-3499255727544130Open DOISearch in Google Scholar

3. Koksal T, Akelma AZ, Koksal AO, Kutukoglu I, Ozdemir O, Yuksel CN, et al. Cost-effectiveness of rotavirus vaccination in Turkey. J Microbiol Immunol Infect 2017; 50: 693-9. DOI: 10.1016/j.jmii.2016.03.00510.1016/j.jmii.2016.03.00527107612Open DOISearch in Google Scholar

4. Tate JE, Burton AH, Boschi-Pinto C, Parashar UD. Global, Regional, and National Estimates of Rotavirus Mortality in Children <5 Years of Age, 2000-2013. Clin Infect Dis. 2016; 62(suppl 2): S96-S105. DOI: 10.1093/cid/civ101310.1093/cid/civ101327059362Open DOISearch in Google Scholar

5. WHO. Estimated rotavirus deaths for children under 5 years of age: 2013, 215 000. Immunization, Vaccines and Biologicals: Monitoring and surveillance. Available at: https://www.who.int/immunization/monitoring_surveillance/burden/estimates/rotavirus/en/. Accessed January 27, 2019.Search in Google Scholar

6. Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, et al. Rotavirus infection. Nat Rev Dis Primers. 2017; 9(3): 17083. DOI: 10.1038/nrdp.2017.8310.1038/nrdp.2017.83585891629119972Open DOISearch in Google Scholar

7. Shepherd FK, Herrera-Ibata DM, Porter E, Homwong N, Hesse R, Bai J, et al. Whole Genome Classification and Phylogenetic Analyses of Rotavirus B strains from the United States. Pathogens 2018; 7(2): 44. DOI: 10.3390/pathogens702004410.3390/pathogens7020044602720829670022Open DOISearch in Google Scholar

8. Laboratory of Viral Genomics. Rotavirus Classification Working Group (RCWG), Virus Classification. Available at: https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg (List of accepted genotypes).Search in Google Scholar

9. Owor BE, Mwanga MJ, Njeru R, Mugo R, Ngama M, Otieno GP, et al. Molecular characterization of rotavirus group A strains circulating prior to vaccine introduction in rural coastal Kenya, 2002-2013. Wellcome Open Research 2018; 3: 150. DOI: 10.12688/wellcomeopenres.14908.110.12688/wellcomeopenres.14908.1Search in Google Scholar

10. Chen SC, Tan LB, Huang LM, Chen KT. Rotavirus infection and the current status of rotavirus vaccines. J Formos Med Assoc 2012; 111: 183-93. DOI: 10.1016/j.jfma.2011.09.02410.1016/j.jfma.2011.09.02422526206Search in Google Scholar

11. Bozdayi G, Altay A, Yahiro T, Ahmed S, Meral M, Dogan B, et al. Re-emergence of genotype G9 during a five-and-a-half-year period in Turkish children with rotavirus diarrhea. Arch Virol 2016; 161: 2879-84. DOI: 10.1007/s00705-016-2986-510.1007/s00705-016-2986-527444180Open DOISearch in Google Scholar

12. Tapisiz A, Karahan ZC, Çiftçi E, Ince E, Doğru U. Changing patterns of rotavirus genotypes in Turkey. Curr Microbiol 2011; 63: 517-22. DOI: 10.1007/s00284-011-0014-210.1007/s00284-011-0014-221938522Open DOISearch in Google Scholar

13. Cat O, Iturriza M, Gray J. Molecular characterization of rotaviruses circulating in the population in Turkey. Epidemiol Infect 2005; 133: 673-8. DOI: 10.1017/S095026880500388210.1017/S0950268805003882287029516050513Search in Google Scholar

14. Bozdayi G, Dogan B, Dalgic B, Bostanci I, Sari S, Battaloglu NO, et al. Diversity of human rotavirus G9 among children in Turkey. J Med Virol 2008; 80: 733-40. DOI: 10.1002/jmv.2112010.1002/jmv.2112018297696Open DOISearch in Google Scholar

15. Durmaz R, Kalaycioglu AT, Acar S, Bakkaloglu Z, Karagoz A, Korukluoglu G, et al. Prevalence of rotavirus genotypes in children younger than 5 years of age before the introduction of a universal rotavirus vaccination program: report of rotavirus surveillance in Turkey. PLoS One 2014; 9: e113674. DOI: 10.1371/journal.pone.011367410.1371/journal.pone.0113674424989125437502Search in Google Scholar

16. Gentsch JR, Glass RI, Woods P, Gouvea V, Gorziglia M, Flores J, et al. Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol 1992; 30: 1365-73.10.1128/jcm.30.6.1365-1373.19922652941320625Search in Google Scholar

17. Gouvea V, Glass RI, Woods P, Taniguchi K, Clark HF, Forrester B, et al. Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J Clin Microbiol 1990; 28: 276-82.10.1128/jcm.28.2.276-282.19902695902155916Search in Google Scholar

18. Gunasena S, Nakagomi O, Isegawa Y, Kaga E, Nakagomi T, Steele AD, et al. Relative frequency of VP4 gene alleles among human rotaviruses recovered over a 10-year period (1982-1991) from Japanese children with diarrhea. J Clin Microbiol 1993; 31: 2195-7.10.1128/jcm.31.8.2195-2197.19932657218396591Search in Google Scholar

19. Uchida R, Pandey BD, Sherchand JB, Ahmed K, Yokoo M, Nakagomi T, et al. Molecular epidemology of rotavirus diarrhea among children and adults in Nepal: detection of G12 strains with P[6] or P[8] and a G11P[25] strain. J Clin Microbiol 2006; 44: 3499-505. DOI: 10.1128/JCM.01089-0610.1128/JCM.01089-06159476517021073Open DOISearch in Google Scholar

20. Iturriza-Gomara M, Kang G, Gray J. Rotavirus genotyping: keeping up with an evolving population of human rotaviruses. J Clin Virol 2004; 31(4): 259-65. DOI: 10.1016/j.jcv.2004.04.00910.1016/j.jcv.2004.04.00915494266Open DOISearch in Google Scholar

21. Hall TA. “BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT”. Nucl. Acids. Symp. Ser. 1999; 41: 95-98.Search in Google Scholar

22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30: 2725-9. DOI: 10.1093/molbev/mst19710.1093/molbev/mst197384031224132122Search in Google Scholar

23. Abdel-Haq N, Amjad M, McGrath E, Salimnia H, Fairfax M, Asmar BI. Rotavirus infections in Detroit, USA, a region of low vaccine prevalence. Virus disease 2016; 27: 179-82. DOI: 10.1007/s13337-016-0309-910.1007/s13337-016-0309-9490900627366769Open DOISearch in Google Scholar

24. Ceyhan M, Alhan E, Salman N, Kurugol Z, Yildirim I, Celik U, et al. Multicenter prospective study on the burden of rotavirus gastroenteritis in Turkey, 2005-2006: a hospital-based study. J Infect Dis 2009; 200: 234-8. DOI: 10.1086/60505610.1086/60505619817603Search in Google Scholar

25. Abdel-Haq N, Amjad M, McGrath E, Chearskul P, Amer A, Salimnia H, et al. Emergence of human rotavirus genotype G9 in metropolitan Detroit between 2007 and 2009. J Med Microbiol 2011; 60: 761-7. DOI: 10.1099/jmm.0.026807-010.1099/jmm.0.026807-021372186Open DOISearch in Google Scholar

26. Esteban LE, Rota RP, Gentsch JR, Jiang B, Esona M, Glass RI, et al. Molecular epidemiology of group A rotavirus in Buenos Aires, Argentina 2004-2007: reemergence of G2P[4] and emergence of G9P[8] strains. J Med Virol 2010; 82: 1083-93. DOI: 10.1002/jmv.2174510.1002/jmv.2174520419826Search in Google Scholar

27. Midgley S, Böttiger B, Jensen TG, Friis-Møller A, Person LK, Nielsen L, et al. Human group A rotavirus infections in children in Denmark: detection of reassortant G9 strains and zoonotic P[14] strains. Infect Genet Evol 2014; 27: 114-20. DOI: 10.1016/j.meegid.2014.07.00810.1016/j.meegid.2014.07.00825038295Open DOISearch in Google Scholar

28. Wangchuk S, Mitui MT, Tshering K, Yahiro T, Bandhari P, Zangmo S, et al. Dominance of emerging G9 and G12 genotypes and polymorphism of VP7 and VP4 of rotaviruses from Bhutanese children with severe diarrhea prior to the introduction of vaccine. PLoS One 2014; 9: e110795. DOI: 10.1371/journal.pone.011079510.1371/journal.pone.0110795420384925330070Search in Google Scholar

29. Dulgheroff AC, Figueiredo EF, Gouvêa VS, Domingues AL. Changes in epidemiology of rotavirus in the Triângulo Mineiro region of Brazil: lack of two consecutive rotavirus seasons. Braz J Med Biol Res 2014; 47: 10915. DOI: 10.1590/1414-431X2014415610.1590/1414-431X20144156Open DOISearch in Google Scholar

30. Mukhopadhya I, Murdoch H, Berry S, Hunt A, Iturriza-Gomara M, Smith-Palmer A, et al. Changing molecular epidemiology of rotavirus infection after introduction of monovalent rotavirus vaccination in Scotland. Vaccine 2017; 35: 156-63. DOI: 10.1016/j.vaccine.2016.11.02810.1016/j.vaccine.2016.11.02827876201Open DOISearch in Google Scholar

31. Öztas S, Altındis M, Asik G, Acar S, Karagöz A, Bükülmez A, et al. Rotavirus and adenovirus in children with acute gastroenteritis and the molecular epidemiology of rotavirus. Nobel Med 2016; 12: 87-93.Search in Google Scholar

32. Justino MCA, Araujo EC, van Doorn L-J, Oliveira CS, Gabbay YB, Mascarenhas JDP, et al. Oral live attenuated human rotavirus vaccine (RotarixTM) offers sustained high protection against severe G9P[8] rotavirus gastroenteritis during the first two years of life in Brazilian children. Mem Inst Oswaldo Cruz, Riode Janeiro 2012; 107(7): 846-53. DOI: 10.1590/S0074-0276201200070000210.1590/S0074-0276201200070000223147138Search in Google Scholar

33. Kahraman H, Altay-Kocak A, Albakkour K, Muftah H, Dalgic B, Caglar K, et al. Emerging rotavirus genotypes G10 and G12 in patients with acute gastroenteritis in Turkey. 21st ESCV Annual Meeting, Athens, 23-26 September, 2018, Poster No: 273.Search in Google Scholar

34. Durmaz R, Bakkaloglu Z, Unaldi O, Karagoz A, Korukluoglu G, Kalaycioglu AT, et al. Prevalence and diversity of rotavirus A genotypes circulating in Turkey during a 2-year sentinel surveillance period, 2014-2016. J Med Virol. 2018; 90: 229–38. DOI: 10.1002/jmv.2494510.1002/jmv.2494528892173Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo