1. bookVolume 27 (2019): Issue 2 (April 2019)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Background: Heat shock protein 27 (HSP27) is an intracellular chaperone constitutively expressed in many cell types including cardio myocytes and endothelial cells. Circulating levels of HSP27 and anti-HSP27 antibody are higher in patients with CVD. Anti-HSP27 antibody concentrations were also reported to be increased in atherogenesis. We aimed to evaluate serum anti-HSP27 antibody titers in individuals with, or without, MetS in the MASHAD study cohort with large sample size in 6,568 subjects.

Methods: Participants with MetS were identified from MASHAD cohort (n=3358) using the IDF criteria, and the control group were those individuals who did not meet these criteria (n=3210). In-house enzyme-linked immune sorbent assay (ELISA) method was used for measuring Anti-HSP27 antibody levels. The two groups were matched for age, sex and smoking habit.

Results: As expected, there were significant differences in height (p= 0.004), waist and hip circumference, weight, BMI, systolic and diastolic blood pressure, TGs, TC, HDL-C, Hs-CRP, glucose, with the presence of diabetes mellitus, hypertension, hyperlipidemia (p<0.001) between the two groups. Serum HSP27 antibody titers did not show significant difference between the groups with and without metabolic syndrome (p= 0.740).

Conclusion: In conclusion, our results revealed serum anti-HSP27 antibody titers were not statistically different between individuals with and without MetS. However, it is possible that drug treatment may affect antibody titers and confound our findings in this population sample..

Keywords

1. Takata H, Fujimoto S. Metabolic syndrome. Nihon rinsho Japanese journal of clinical medicine. 2013;71(2):266-9.Search in Google Scholar

2. Kargari M, Parizadeh SMR, Karimian MS, Farahmand SK, Sahebkar A, Esmaeili H, et al. Serum anti-HSP27 antibody titers in patients with metabolic syndrome, with or without diabetes mellitus. Comparative Clinical Pathology. 2016;25(4):895-901. DOI: 10.1007/s00580-016-2279-010.1007/s00580-016-2279-0Open DOISearch in Google Scholar

3. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. Jama. 2002;287(3):356-9. DOI: 10.1001/jama.287.3.35610.1001/jama.287.3.356Open DOISearch in Google Scholar

4. Brumpton BM, Camargo CA, Romundstad PR, Langhammer A, Chen Y, Mai X-M. Metabolic syndrome and incidence of asthma in adults: the HUNT study. European Respiratory Journal. 2013;42(6):1495-502. DOI: 10.1183/09031936.0004601310.1183/09031936.00046013Open DOISearch in Google Scholar

5. Alberti KGM, Zimmet P, Shaw J. The metabolic syndrome—a new worldwide definition. The Lancet. 2005;366(9491):1059-62. DOI: 10.1016/S0140-6736(05)67402-810.1016/S0140-6736(05)67402-8Open DOISearch in Google Scholar

6. Braun S, Bitton-Worms K, LeRoith D. The link between the metabolic syndrome and cancer. International journal of biological sciences. 2011;7(7):1003. DOI: 10.7150/ijbs.7.100310.7150/ijbs.7.1003316415021912508Open DOISearch in Google Scholar

7. van Vliet-Ostaptchouk JV, Nuotio M-L, Slagter SN, Doiron D, Fischer K, Foco L, et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC endocrine disorders. 2014;14(1):9. DOI: 10.1186/1472-6823-14-910.1186/1472-6823-14-9392323824484869Open DOISearch in Google Scholar

8. Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinology and metabolism clinics of North America. 2004;33(2):351-75. DOI: 10.1016/j.ecl.2004.03.00510.1016/j.ecl.2004.03.00515158523Search in Google Scholar

9. Miranda PJ, DeFronzo RA, Califf RM, Guyton JR. Metabolic syndrome: definition, pathophysiology, and mechanisms. American heart journal. 2005;149(1):33-45. DOI: 10.1016/j.ahj.2004.07.01310.1016/j.ahj.2004.07.01315660032Open DOISearch in Google Scholar

10. Radons J. The Heat Shock Protein Chaperone Interaction Network as Guardian of the Proteome in Health and Disease. Current Immunology Reviews. 2017;13(1):2-3. DOI: 10.2174/15733955130117090611523810.2174/157339551301170906115238Search in Google Scholar

11. Gomez-Pastor R, Burchfiel ET, Thiele DJ. Regulation of heat shock transcription factors and their roles in physiology and disease. Nature Reviews Molecular Cell Biology. 2017. DOI: 10.1038/nrm.2017.7310.1038/nrm.2017.73579401028852220Open DOISearch in Google Scholar

12. Lu XY, Chen L, Cai XL, Yang HT. Overexpression of heat shock protein 27 protects against ischaemia/reperfusion-induced cardiac dysfunction via stabilization of troponin I and T. Cardiovascular research. 2008;79(3):500-8. DOI: 10.1093/cvr/cvn09110.1093/cvr/cvn091Search in Google Scholar

13. Shams S, Shafi S, Bodman-Smith K, Williams P, Mehta S, Ferns GA. Anti-heat shock protein-27 (Hsp-27) antibody levels in patients with chest pain: association with established cardiovascular risk factors. Clinica chimica acta; international journal of clinical chemistry. 2008;395(1-2):42-6.10.1016/j.cca.2008.04.026Search in Google Scholar

14. Ghayour-Mobarhan M, Sahebkar A, Parizadeh SM, Moohebati M, Tavallaie S, Rezakazemi-Bajestani SM, et al. Antibody titres to heat shock protein 27 are elevated in patients with acute coronary syndrome. International journal of experimental pathology. 2008;89(3):209-15. DOI: 10.1111/j.1365-2613.2008.00586.x10.1111/j.1365-2613.2008.00586.xOpen DOISearch in Google Scholar

15. Pourghadamyari H, Moohebati M, Parizadeh SM, Falsoleiman H, Dehghani M, Fazlinezhad A, et al. Serum antibody titers against heat shock protein 27 are associated with the severity of coronary artery disease. Cell stress & chaperones. 2011;16(3):309-16. DOI: 10.1007/s12192-010-0241-710.1007/s12192-010-0241-7Open DOISearch in Google Scholar

16. Kuang H-J, Zhao G-J, Chen W-J, Zhang M, Zeng G-F, Zheng X-L, et al. Hsp27 promotes ABCA1 expression and cholesterol efflux through the PI3K/PKCζ/Sp1 pathway in THP-1 macrophages. European Journal of Pharmacology. 2017. DOI: 10.1016/j.ejphar.2017.06.01510.1016/j.ejphar.2017.06.015Open DOISearch in Google Scholar

17. Shi C, Chen Y-X, Diao C, Batulan Z, OBrien ER. Novel Atheroprotection Therapy: Reduction in Serum Lipid Levels by HSP27 Via Down-regulation of HNF1a and PCSK9 Expression. Am Heart Assoc; 2016.Search in Google Scholar

18. Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing research reviews. 2011;10(3):319-29. DOI: 10.1016/j.arr.2010.11.00210.1016/j.arr.2010.11.002Open DOISearch in Google Scholar

19. Ghayour-Mobarhan M, Moohebati M, Esmaily H, Ebrahimi M, Parizadeh SMR, Heidari-Bakavoli AR, et al. Mashhad stroke and heart atherosclerotic disorder (MASHAD) study: design, baseline characteristics and 10-year cardiovascular risk estimation. International journal of public health. 2015;60(5):561-72. DOI: 10.1007/s00038-015-0679-610.1007/s00038-015-0679-6Search in Google Scholar

20. Tremblay AJ, Morrissette H, Gagné J-M, Bergeron J, Gagné C, Couture P. Validation of the Friedewald formula for the determination of low-density lipoprotein cholesterol compared with β-quantification in a large population. Clinical biochemistry. 2004;37(9):785-90. DOI: 10.1016/j.clinbiochem.2004.03.00810.1016/j.clinbiochem.2004.03.008Open DOISearch in Google Scholar

21. Austin PC. A comparison of 12 algorithms for matching on the propensity score. Statistics in Medicine. 2014;33(6):1057-69. DOI: 10.1002/sim.600410.1002/sim.6004Open DOISearch in Google Scholar

22. Ghayour-Mobarhan M, Rahsepar A, Tavallaie S, Rahsepar S, Ferns G. The potential role of heat shock proteins in cardiovascular disease: evidence from in vitro and in vivo studies. Advances in Clinical Chemistry. 2009;48:27-72. DOI: 10.1016/S0065-2423(09)48002-810.1016/S0065-2423(09)48002-8Open DOISearch in Google Scholar

23. Kim J, Yenari M. Heat Shock proteins and the Stress Response. Primer on Cerebrovascular Diseases. 2017:273. DOI: 10.1016/B978-0-12-803058-5.00056-410.1016/B978-0-12-803058-5.00056-4Open DOISearch in Google Scholar

24. Abulafia-Lapid R, Elias D, Raz I, Keren-Zur Y, Atlan H, Cohen IR. T cell proliferative responses of type 1 diabetes patients and healthy individuals to human hsp60 and its peptides. Journal of autoimmunity. 1999;12(2):121-9. DOI: 10.1006/jaut.1998.026210.1006/jaut.1998.026210047432Open DOISearch in Google Scholar

25. Ghayour‐Mobarhan M, Sahebkar A, Parizadeh SMR, Moohebati M, Tavallaie S, RezaKazemi‐Bajestani SM, et al. Antibody titres to heat shock protein 27 are elevated in patients with acute coronary syndrome. International journal of experimental pathology. 2008;89(3):209-15. DOI: 10.1111/j.1365-2613.2008.00586.x10.1111/j.1365-2613.2008.00586.x252577318460073Open DOISearch in Google Scholar

26. Kargari M, Tavassoli S, Avan A, Ebrahimi M, Azarpazhooh MR, Asoodeh R, et al. Relationship between serum anti-heat shock protein 27 antibody levels and obesity. Clinical Biochemistry. 2017. DOI: 10.1016/j.clinbiochem.2017.02.01510.1016/j.clinbiochem.2017.02.01528237841Open DOISearch in Google Scholar

27. Viollet B, Guigas B, Garcia NS, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clinical science. 2012;122(6):253-70. DOI: 10.1042/CS2011038610.1042/CS20110386339886222117616Open DOISearch in Google Scholar

28. Dai S, Tang Z, Cao J, Zhou W, Li H, Sampson S, et al. Suppression of the HSF1-mediated proteotoxic stress response by the metabolic stress sensor AMPK. The EMBO journal. 2015;34(3):275-93. DOI: 10.15252/embj.20148906210.15252/embj.201489062433911725425574Search in Google Scholar

29. Ghayour-Mobarhan M, Lamb DJ, Vaidya N, Livingstone C, Wang T, Ferns GA. Heat shock protein antibody titers are reduced by statin therapy in dyslipidemic subjects: a pilot study. Angiology. 2005;56(1):61-8. DOI: 10.1177/00033197050560010810.1177/00033197050560010815678257Search in Google Scholar

30. Moohebati M, Bidmeshgi S, Azarpazhooh MR, Daloee MH, Ghayour-Mobarhan M, Tavallaie S, et al. Simvastatin treatment reduces heat shock protein 60, 65, and 70 antibody titers in dyslipidemic patients: A randomized, double-blind, placebo-controlled, cross-over trial. Clin Biochem. 2011;44(2-3):192-7. DOI: 10.1016/j.clinbiochem.2010.09.01610.1016/j.clinbiochem.2010.09.01620875810Open DOISearch in Google Scholar

31. Aryanpour R, Parizadeh SMR, Moohebati M, Tavallaie S, Sahebkar AH, Mohammadi S, et al. SimvastatinTreatment is not Associated with Changes in Serum Concentrations of Heat ShockProteins -60 and -70 in Patients with Dyslipidemia. Pharmaceutical Sciences.20(2):46-51.Search in Google Scholar

32. Burut DFP, Borai A, Livingstone C, Ferns G. Serum heat shock protein 27 antigen and antibody levels appear to be related to the macrovascular complications associated with insulin resistance: a pilot study. Cell Stress and Chaperones. 2010;15(4):379-86. DOI: 10.1007/s12192-009-0152-710.1007/s12192-009-0152-7308264419882236Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo