1. bookVolume 27 (2019): Issue 3 (July 2019)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Antibacterial activity of selected snake venoms on pathogenic bacterial strains

Published Online: 30 Jul 2019
Page range: 305 - 317
Received: 24 Sep 2018
Accepted: 07 Feb 2019
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Snake venoms are aqueous solutions containing peptides and proteins with various biochemical, physiological, and pathophysiological effects. Several snake venom components are used as lead molecules in the development of new active substances for the treatment of cardiovascular diseases, clotting disorders, cancer or pain.

Antibacterial activity has also been attributed to snake venoms and proteins isolated from snake venoms. This study provides information regarding the antibacterial activity of venoms obtained from various snake species from the Elapidae and Viperidae families. Minimum inhibitory and bactericidal concentrations of snake venoms were determined for three Gram-positive (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 29213, and Methicillin-resistant Staphylococcus aureus ATCC 43300) and three Gram-negative (Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, and Pseudomonas aeruginosa ATCC 27853) pathogenic bacteria. The observed effects were correlated with the protein content of each venom, determined using SDS-PAGE analysis and comparison with data available in the literature. Our findings represent a starting point for the selection of snake venoms containing components with potential use as lead molecules in the development of new antibacterial agents, targeting multidrug resistant bacterial strains.

Keywords

1. Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–98. DOI: 10.1016/S1473-3099(13)70318-910.1016/S1473-3099(13)70318-9Open DOISearch in Google Scholar

2. Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P, et al. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg Infect Control. 2017;12:Doc05.Search in Google Scholar

3. Munteanu F, Gligor R, Crîsnic I, Costache CA, Colosi IA. Antimicrobial activity of Melampyrum cristatum, Melampyrum bihariense and Melampyrum arvense tinctures. African J Pharm Pharmacol. Academic Journals; 2012 Oct 31;6(40):2808–12.10.5897/AJPP12.404Search in Google Scholar

4. Tănase C, Coşarcă S, Toma F, Mare A, Man A, Miklos A, et al. Antibacterial activities of beech bark (Fagus sylvatica L.) polyphenolic extract. Environ Eng Manag J. 2018;17(4):877-84. DOI: 10.30638/eemj.2018.08810.30638/eemj.2018.088Search in Google Scholar

5. Man A, Santacroce L, Jacob R, Mare A, Man L. Antimicrobial Activity of Six Essential Oils Against a Group of Human Pathogens: A Comparative Study. Pathogens. 2019 Jan 28;8(1):15. DOI: 10.3390/pathogens801001510.3390/pathogens8010015647118030696051Search in Google Scholar

6. Han SM, Kim JM, Hong IP, Woo SO, Kim SG, Jang HR, et al. Antibacterial activity and antibiotic-enhancing effects of honeybee venom against methicillin-resistant staphylococcus aureus. Molecules. 2016; DOI: 10.3390/molecules2101007910.3390/21010079Open DOISearch in Google Scholar

7. Dubovskii P V., Ignatova AA, Volynsky PE, Ivanov IA, Zhmak MN, Feofanov A V., et al. Improving therapeutic potential of antibacterial spider venom peptides: coarse-grain molecular dynamics guided approach. Future Med Chem. 2018 Oct 1;10(19):2309-22. DOI: 10.4155/fmc-2018-017010.4155/fmc-2018-017030215282Open DOISearch in Google Scholar

8. de Oliveira Junior NG, e Silva Cardoso MH, Franco OL. Snake venoms: Attractive antimicrobial protein-aceous compounds for therapeutic purposes. Cell Mol Life Sci. 2013;70(24):4645–58. DOI: 10.1007/s00018-013-1345-x10.1007/s00018-013-1345-x23657358Search in Google Scholar

9. Harvey AL. Toxins and drug discovery. Toxicon. 2014;92:193–200. DOI: 10.1016/j.toxicon.2014.10.02010.1016/j.toxicon.2014.10.02025448391Open DOISearch in Google Scholar

10. Koh CY, Kini RM. From snake venom toxins to therapeutics – Cardiovascular examples. Toxicon. 2012;59(4):497–506. DOI: 10.1016/j.toxicon.2011.03.01710.1016/j.toxicon.2011.03.01721447352Search in Google Scholar

11. Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: Current status and potential. Bioorganic Med Chem. 2018 Jun 1;26(10):2738-58. DOI: 10.1016/j.bmc.2017.09.02910.1016/j.bmc.2017.09.02928988749Search in Google Scholar

12. McCleary RJR, Kini RM. Snake bites and hemostasis/thrombosis. Thromb Res. 2013;132:642–6. DOI: 10.1016/j.thromres.2013.09.03110.1016/j.thromres.2013.09.031Open DOISearch in Google Scholar

13. Waheed H, Moin SF, Choudhary MI. Snake Venom: From Deadly Toxins to Life-saving Therapeutics. Curr Med Chem. 2017;24(17):1874-91. DOI: 10.2174/092986732466617060509154610.2174/0929867324666170605091546Open DOISearch in Google Scholar

14. Calderon LA, Sobrinho JC, Zaqueo KD, De Moura AA, Grabner AN, Mazzi MV., et al. Antitumoral activity of snake venom proteins: New trends in cancer therapy. Biomed Res Int. 2014;2014:1–19. DOI: 10.1155/2014/20363910.1155/2014/203639Open DOISearch in Google Scholar

15. Shanbhag VKL. Applications of snake venoms in treatment of cancer. Asian Pac J Trop Biomed. 2015;5(4):275–6. DOI: 10.1016/S2221-1691(15)30344-010.1016/S2221-1691(15)30344-0Open DOISearch in Google Scholar

16. Gazerani P, Cairns BE. Venom-based biotoxins as potential analgesics. Expert Rev Neurother. 2014;14(11):1261–74. DOI: 10.1586/14737175.2014.96251810.1586/14737175.2014.962518Open DOISearch in Google Scholar

17. Stiles BG, Sexton FW, Weinstein SA. Antibacterial effects of different snake venoms: Purification and characterization of antibacterial proteins from Pseudechis australis (Australian king brown or mulga snake) venom. Toxicon. 1991;29(9):1129–41. DOI: 10.1016/0041-0101(91)90210-I10.1016/0041-0101(91)90210-Open DOISearch in Google Scholar

18. Talan DA, Citron DM, Overturf GD, Singer B, Froman P, Goldstein EJC. Antibacterial activity of crotalid venoms against oral snake flora and other clinical bacteria. J Infect Dis. 1991;164(1):195–8. DOI: 10.1093/infdis/164.1.19510.1093/infdis/164.1.1952056205Search in Google Scholar

19. Samy RP, Gopalakrishnakone P, Thwin MM, Chow TKV, Bow H, Yap EH, et al. Antibacterial activity of snake, scorpion and bee venoms: A comparison with purified venom phospholipase A2 enzymes. J Appl Microbiol. 2007;102(3):650–9. DOI: 10.1111/j.1365-2672.2006.03161.x10.1111/j.1365-2672.2006.03161.x17309613Open DOISearch in Google Scholar

20. Montecucco C, Gutiérrez JM, Lomonte B. Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: Common aspects of their mechanisms of action. Cell Mol Life Sci. 2008;65(18):2897–912. DOI: 10.1007/s00018-008-8113-310.1007/s00018-008-8113-318563294Open DOISearch in Google Scholar

21. Gutiérrez JM, Lomonte B. Phospholipases A2: Unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon. 2013;62:27–39. DOI: 10.1016/j.toxicon.2012.09.00610.1016/j.toxicon.2012.09.00623025922Open DOISearch in Google Scholar

22. Rodrigues RS, Izidoro LFM, de Oliveira RJ, Sampaio S V, Soares AM, Rodrigues VM. Snake venom phospholipases A2: a new class of antitumor agents. Protein Pept Lett. 2009;16(8):894–8. DOI: 10.2174/09298660978892326610.2174/09298660978892326619689415Search in Google Scholar

23. Samy RP, Gopalakrishnakone P, Stiles BG, Girish KS, Swamy SN, Hemshekhar M, et al. Snake venom phospholipases A(2): a novel tool against bacterial diseases. Curr Med Chem. 2012;19(36):6150–62. DOI: 10.2174/092986731120906615010.2174/0929867311209066150Open DOISearch in Google Scholar

24. Xu C, Ma D, Yu H, Li Z, Liang J, Lin G, et al. A bactericidal homodimeric phospholipases A2 from Bungarus fasciatus venom. Peptides. 2007;28(5):969–73. DOI: 10.1016/j.peptides.2007.02.00810.1016/j.peptides.2007.02.00817383773Open DOISearch in Google Scholar

25. Markland FS, Swenson S. Snake venom metalloproteinases. Toxicon. 2013;62:3–18. DOI: 10.1016/j.toxicon.2012.09.00410.1016/j.toxicon.2012.09.00423000249Open DOISearch in Google Scholar

26. Samy RP, Gopalakrishnakone P, Chow VTK, Ho B. Viper metalloproteinase (Agkistrodon halys Pallas) with antimicrobial activity against multi-drug resistant human pathogens. J Cell Physiol. 2008;216(1):54–68. DOI: 10.1002/jcp.2137310.1002/jcp.2137318297685Open DOISearch in Google Scholar

27. Izidoro LFM, Sobrinho JC, Mendes MM, Costa TR, Grabner AN, Rodrigues VM, et al. Snake venom L-amino acid oxidases: Trends in pharmacology and biochemistry. Biomed Res Int. 2014;2014:1–19. DOI: 10.1155/2014/19675410.1155/2014/196754397149824738050Open DOISearch in Google Scholar

28. Zhang H, Yang Q, Sun M, Teng M, Niu L. Hydrogen peroxide produced by two amino acid oxidases mediates antibacterial actions. J Microbiol. 2004;42(4):336–9.Search in Google Scholar

29. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard-Tenth Edition. CLSI document M07-A10. 2015. 1-87 p.Search in Google Scholar

30. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5. DOI: 10.1038/227680a010.1038/227680a05432063Search in Google Scholar

31. The Reptile Database [Internet]. [cited 2019 Jan 28]. Available from: http://www.reptile-database.org/Search in Google Scholar

32. Fry BG, Wickramaratna JC, Hodgson WC, Alewood PF, Kini RM, Ho H, et al. Electrospray liquid chromatography/mass spectrometry fingerprinting of Acanthophis (death adder) venoms: Taxonomic and toxino-logical implications. Rapid Commun Mass Spectrom. 2002;16:600–8. DOI: 10.1002/rcm.61310.1002/rcm.61311870898Search in Google Scholar

33. Petras D, Heiss P, Harrison RA, Süssmuth RD, Calvete JJ. Top-down venomics of the East African green mamba, Dendroaspis angusticeps, and the black mamba, Dendroaspis polylepis, highlight the complexity of their toxin arsenals. J Proteomics. 2016;146:148–64. DOI: 10.1016/j.jprot.2016.06.01810.1016/j.jprot.2016.06.01827318176Open DOISearch in Google Scholar

34. Huang HW, Liu BS, Chien KY, Chiang LC, Huang SY, Sung WC, et al. Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics. 2015;128:92–104. DOI: 10.1016/j.jprot.2015.07.01510.1016/j.jprot.2015.07.01526196238Open DOISearch in Google Scholar

35. Tan KY, Tan CH, Fung SY, Tan NH. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteomics. 2015;120:105–25. DOI: 10.1016/j.jprot.2015.02.01210.1016/j.jprot.2015.02.01225748141Open DOISearch in Google Scholar

36. Osipov A V., Levashov MY, Tsetlin VI, Utkin YN. Cobra venom contains a pool of cysteine-rich secretory proteins. Biochem Biophys Res Commun. 2005;328:177–82. DOI: 10.1016/j.bbrc.2004.12.15410.1016/j.bbrc.2004.12.15415670767Open DOISearch in Google Scholar

37. Modahl CM, Mukherjee AK, Mackessy SP. An analysis of venom ontogeny and prey-specific toxicity in the Monocled Cobra (Naja kaouthia). Toxicon. 2016;119:8–20. DOI: 10.1016/j.toxicon.2016.04.04910.1016/j.toxicon.2016.04.04927163885Open DOISearch in Google Scholar

38. Serrano SMT. The long road of research on snake venom serine proteinases. Toxicon. 2013;62:19–26. DOI: 10.1016/j.toxicon.2012.09.00310.1016/j.toxicon.2012.09.00323010164Open DOISearch in Google Scholar

39. Calvete JJ, Fasoli E, Sanz L, Boschetti E, Righetti PG. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. J Proteome Res. 2009;8:3055–67. DOI: 10.1021/pr900249q10.1021/pr900249q19371136Search in Google Scholar

40. Weiss JP. Molecular determinants of bacterial sensitivity and resistance to mammalian Group IIA phospholipase A2. Biochim Biophys Acta - Biomembr. 2015;1848:3072–7. DOI: 10.1016/j.bbamem.2015.05.01810.1016/j.bbamem.2015.05.018460585626079797Open DOISearch in Google Scholar

41. Sartingen S, Rozdzinski E, Muscholl-Silberhorn A, Marre R. Aggregation substance increases adherence and internalization, but not translocation, of Enterococcus faecalis through different intestinal epithelial cells in vitro. Infect Immun. 2000 Oct;68(10):6044-7. DOI: 10.1128/IAI.68.10.6044-6047.200010.1128/IAI.68.10.6044-6047.200010157110992519Search in Google Scholar

42. Istivan TS, Coloe PJ. Phospholipase A in Gram-negative bacteria and its role in pathogenesis. Microbiology. 2006;152:1263–74. DOI: 10.1099/mic.0.28609-010.1099/mic.0.28609-016622044Open DOISearch in Google Scholar

43. Klockgether J, Tümmler B. Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Research. 2017;6(1261):1–10. DOI: 10.12688/f1000research.10506.110.12688/f1000research.10506.1553803228794863Search in Google Scholar

44. Tytgat HLP, Lebeer S. The Sweet Tooth of Bacteria: Common Themes in Bacterial Glycoconjugates. Micro-biol Mol Biol Rev. 2014;78(3):372–417. DOI: 10.1128/MMBR.00007-1410.1128/MMBR.00007-14418768725184559Open DOISearch in Google Scholar

45. Lomonte B, Tsai WC, Ure-a-Diaz JM, Sanz L, Mora-Obando D, Sánchez EE, et al. Venomics of new world pit vipers: Genus-wide comparisons of venom proteomes across agkistrodon. J Proteomics. 2014;96:103–16. DOI: 10.1016/j.jprot.2013.10.03610.1016/j.jprot.2013.10.036429445824211403Open DOISearch in Google Scholar

46. Nunes E dos S, de Souza MAA, Vaz AF de M, Santana GM de S, Gomes FS, Coelho LCBB, et al. Purification of a lectin with antibacterial activity from Both-rops leucurus snake venom. Comp Biochem Physiol - B Biochem Mol Biol. 2011;159:57–63. DOI: 10.1016/j.cbpb.2011.02.00110.1016/j.cbpb.2011.02.00121334449Open DOISearch in Google Scholar

47. Sartim MA, Sampaio S V. Snake venom galactoside-binding lectins: A structural and functional overview. J Venom Anim Toxins Incl Trop Dis. 2015;21(35):1–11. DOI: 10.1186/s40409-015-0038-310.1186/s40409-015-0038-3458321426413085Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo