1. bookVolume 27 (2019): Issue 2 (April 2019)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Comparison of Total Bilirubin Values Measured with ABL 735 Blood Gas Analyzer and Roche Cobas C8000 Chemistry Analyzer in Age-Segregated Pediatric Patients

Published Online: 02 May 2019
Page range: 137 - 145
Received: 09 Aug 2018
Accepted: 25 Dec 2018
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Aim: Measurement of blood bilirubin levels is a crucial analysis because of the toxic effects of bilirubin on brain tissue, particularly in preterm neonates. The aim of this study was to investigate the consistency of the total bilirubin values obtained by the blood gas analyzer and the autoanalyzer.

Material and Methods: In this study, we used total bilirubin data of 407 pediatric patients from Kocaeli University Medical Faculty Education and Research Hospital Central Laboratory System. Total bilirubin data, provided that it was measured simultaneously, was obtained from ABL 735 blood gas analyzer and Roche Cobas C8000 chemistry analyzer. Pediatric patients (neonates, infant and children under 17 years old) were selected retrospectively by year between 2015-2017.

Results: Under a cut-off value (14.6 mg/dL) ABL 735 blood gas analyzer and Roche COBAS C8000 chemistry analyzer had strong correlation (r = 0.939) for total bilirubin measurements. It was found that 2-15 days old neonates give more scattered total bilirubin data by Bland Altman analysis in two measurements. Statistical analysis performed to compare whole total bilirubin data identity between two measurements: correlation coefficient was found r = 0.949 a statistically significant positive correlation (p < 0.001).

Conclusion: According to our analysis which was supported by previous studies in the literature, we can say that the compatibility between the blood gas analyzer (multi-wave-length spectrophotometric technique) and the chemistry analyzer becomes weaker when the total bilirubin levels exceed 14.6 mg/dL.

Keywords

1. Porter ML, Dennis BL. Hyperbilirubinemia in the term newborn. Am Fam Physician. 2002 Feb 15;65(4):599-606.Search in Google Scholar

2. Amin SB, Lamola AA, editors. Newborn jaundice technologies: unbound bilirubin and bilirubin binding capacity in neonates. Seminars in perinatology. Semin Perinatol. 2011 Jun;35(3):134-40. DOI: 10.1053/j.sem-peri.2011.02.00710.1053/j.sem-peri.2011.02.007Open DOISearch in Google Scholar

3. Callen J, Traber Davis Giardina HS, Li L, Paoloni R, Georgiou A, Runciman WB, et al. Emergency physi-cians’ views of direct notification of laboratory and radiology results to patients using the internet: a multisite survey. JJ Med Internet Res. 2015 Mar 4;17(3):e60. DOI: 10.2196/jmir.372110.2196/jmir.3721437615425739322Open DOISearch in Google Scholar

4. Blick KE. Providing critical laboratory results on time, every time to help reduce emergency department length of stay: how our laboratory achieved a Six Sigma level of performance. Am J Clin Pathol. 2013 Aug;140(2):193-202. DOI: 10.1309/AJCPNUTIPQTRRG0D10.1309/AJCPNUTIPQTRRG0Open DOISearch in Google Scholar

5. Nichols JH. Point of care testing. Clin Lab Med. 2007 Dec;27(4):893-908, viii. DOI: 10.1016/j.cll.2007.07.00310.1016/j.cll.2007.07.00317950904Open DOISearch in Google Scholar

6. Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, et al. Executive summary: guide-lines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2011 Jun;57(6):793-8. DOI: 10.1373/clinchem.2011.16363410.1373/clinchem.2011.16363421617153Search in Google Scholar

7. Allardet-Servent J, Lebsir M, Dubroca C, Fabrigoule M, Jordana S, Signouret T, et al. Point-of-care versus central laboratory measurements of hemoglobin, he-matocrit, glucose, bicarbonate and electrolytes: a pro-spective observational study in critically ill patients. PloS one. 2017;12(1):e0169593. DOI: 10.1371/journal.pone.016959310.1371/journal.pone.0169593522482528072822Search in Google Scholar

8. Mielsch C, Zimmermann A, Wagner D, Matthes B, Schlebusch H, Luppa PB. Point-of-care determination of neonatal bilirubin with the blood gas analyzer Rapid-Lab 1265. Clin Chem Lab Med. 2010 Oct;48(10):1455-61. DOI: 10.1515/CCLM.2010.27910.1515/CCLM.2010.27920604721Search in Google Scholar

9. Fujiwara R, Haag M, Schaeffeler E, Nies AT, Zanger UM, Schwab M. Systemic regulation of bilirubin ho-meostasis: potential benefits of hyperbilirubinemia. Hepatology. 2018;67(4):1609-19. DOI: 10.1002/hep.2959910.1002/hep.2959929059457Open DOISearch in Google Scholar

10. Gazzin S, Vitek L, Watchko J, Shapiro SM, Tiribelli C. A novel perspective on the biology of bilirubin in health and disease. Trends Mol Med. 2016 Sep;22(9):758-68. DOI: 10.1016/j.molmed.2016.07.00410.1016/j.molmed.2016.07.00427515064Search in Google Scholar

11. Chee Y, Chung PH, Wong RM, Wong KK. Jaundice in infants and children: causes, diagnosis, and management. Hong Kong Med J. 2018;24(3):285-92. DOI: 10.12809/hkmj18724510.12809/hkmj18724529807950Search in Google Scholar

12. Ng MCW, How CH. When babies turn yellow. Singapore Med J. 2015;56(11):599. DOI: 10.11622/smedj.201516710.11622/smedj.2015167Search in Google Scholar

13. Lano IM, Lyon AW, Wang L, Ruskin R, Lyon ME. Comparative evaluation of neonatal bilirubin using Radiometer whole blood co-oximetry and plasma bilirubin methods from Roche Diagnostics and Ortho Clinical Diagnostics. Clin biochem. 2018;53:88-92. DOI: 10.1016/j.clinbiochem.2017.12.00910.1016/j.clinbiochem.2017.12.009Open DOISearch in Google Scholar

14. Doumas BT, Poon Pat K-C, Perry BW. Candidate reference method for determination of TB in serum: Development and validation. Clin Chem. 1985;31(11):1779-89.10.1093/clinchem/31.11.1779Search in Google Scholar

15. Tiker F, Gurakan B, Tarcan A. Serum bilirubin levels in 1-month-old, healthy, term infants from southern Turkey. Ann Trop Paediatr. 2002 Sep;22(3):225-8. DOI: 10.1179/02724930212500160610.1179/027249302125001606Search in Google Scholar

16. Burnett R, Covington A, Fogh-Andersen N, Külpmann W, Maas A, Müller-Plathe O, et al., editors. International Federation of Clin Chem (IFCC). Scientific Division. Committee on pH, Blood Gases and Electrolytes. Approved IFCC recommendations on whole blood sampling, transport and storage for simultaneous determination of pH, blood gases and electrolytes. European journal of Clin Chem and clinical biochemistry: journal of the Forum of European Clin Chem Societies; 1995.Search in Google Scholar

17. Lum G, Gambino SR. A comparison of serum versus heparinized plasma for routine chemistry tests. Am J Clin Pathol. 1974 Jan;61(1):108-13. DOI: 10.1093/ajcp/61.1.10810.1093/ajcp/61.1.108Open DOISearch in Google Scholar

18. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307-10. DOI: 10.1016/S0140-6736(86)90837-810.1016/S0140-6736(86)90837-8Search in Google Scholar

19. Cornbleet PJ, Gochman N. Incorrect least-squares regression coefficients in method-comparison analysis. Clin Chem. 1979;25(3):432-8.10.1093/clinchem/25.3.432Search in Google Scholar

20. Grohmann K, Roser M, Rolinski B, Kadow I, Müller C, Goerlach-Graw A, et al. Bilirubin measurement for ne-onates: comparison of 9 frequently used methods. Pediatrics. 2006;117(4):1174-83. DOI: 10.1542/peds.2005-059010.1542/peds.2005-059016585313Open DOISearch in Google Scholar

21. Rosenthal P. Errors in neonatal bilirubin measurement. Clin Chem. 1996;42(11):1880-1.10.1093/clinchem/42.11.1880aSearch in Google Scholar

22. Mussavi M, Niknafs P, Bijari B. Determining the correlation and accuracy of three methods of measuring neonatal bilirubin concentration. Iran J Pediatr. 2013 Jun; 23(3):333–39.Search in Google Scholar

23. Uyanik M, Sertoglu E, Kayadibi H, Tapan S, Serdar MA, Bilgi C, et al. Comparison of blood gas, electrolyte and metabolite results measured with two different blood gas analyzers and a core laboratory analyzer. Scand J Clin Lab Invest. 2015 Apr;75(2):97-105. DOI: 10.3109/00365513.2014.98185410.3109/00365513.2014.98185425431133Open DOISearch in Google Scholar

24. Hawkins RC. Laboratory turnaround time. Clin Biochem Rev. 2007 Nov;28(4):179-94.Search in Google Scholar

25. Dimeski G, Barnett R. Effects of total plasma protein concentration on plasma sodium, potassium and chloride measurements by an indirect ion selective electrode measuring system. Crit Care Resuscitation. 2005;7(1):12.Search in Google Scholar

26. Chow E, Fox N, Gama R. Effect of low serum total protein on sodium and potassium measurement by ion-selective electrodes in critically ill patients. British J Biomed Sci. 2008;65(3):128-31. DOI: 10.1080/09674845.2008.1173281510.1080/09674845.2008.1173281518986099Open DOISearch in Google Scholar

27. Peake M, Mazzachi B, Fudge A, Bais R. Bilirubin measured on a blood gas analyser: a suitable alternative for near-patient assessment of neonatal jaun-dice? Ann Clin Biochem. 2001;38(5):533-40. DOI: 10.1177/00045632010380051110.1177/00045632010380051111587132Open DOISearch in Google Scholar

28. Rolinski B, Küster H, Ugele B, Gruber R, Horn K. TB measurement by photometry on a blood gas analyzer: potential for use in neonatal testing at the point of care. Clin Chem. 2001;47(10):1845-7.10.1093/clinchem/47.10.1845Search in Google Scholar

29. Nuran Ö, Ataman K, Armağan E, SERT ÇP, BALCI AK, Taylan İ. Acil serviste kan gazı değerlerinin biyokimyasal değerler yerine kullanılabilirliği. Gaziantep Med J. 2012;18(3):155-9.Search in Google Scholar

30. Bozkurt S, Altunören O, Kurutaş E, Doğan M. Venöz kan gazı potasyum sonuçları ile laboratuar potasyum sonuçlarının karşılaştırılması. JAEM. 2012;11(2):73-6. DOI: 10.5152/jaem.2012.0210.5152/jaem.2012.02Open DOISearch in Google Scholar

31. Story DA, Poustie S. Agreement between two plasma bicarbonate assays in critically ill patients. Anaesth Intensive Care. 2000 Aug;28(4):399-402.10.1177/0310057X000280040710969366Search in Google Scholar

32. Kelly AM, McAlpine R, Kyle E. Agreement between bicarbonate measured on arterial and venous blood gases. Emerg Med Australas. 2004 Oct-Dec;16(5-6):407-9.10.1111/j.1742-6723.2004.00642.x15537402Search in Google Scholar

33. Wongyingsinn M, Suksuriyayothin S. Use of rapid ABG analyzer in measurement of potassium concentration: does it agree with venous potassium concentration? J Med Assoc Thai. 2009 Jul;92(7):925-9.Search in Google Scholar

34. Nambara T, Katayama Y, Enomoto M, Kikuchi S, Takei A, Ikegami H, et al. Reliability of TB Measurements in Whole Blood from Preterm Neonates Using a Blood Gas Analyzer. Clin Lab. 2016;62(11):2285-9.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo