1. bookVolume 26 (2018): Issue 1 (January 2018)
Journal Details
First Published
08 Aug 2013
Publication timeframe
4 times per year
access type Open Access

Is galectin-3 a promoter of ventricular dysfunction?

Published Online: 30 Jan 2018
Page range: 21 - 36
Received: 10 Sep 2017
Accepted: 10 Dec 2017
Journal Details
First Published
08 Aug 2013
Publication timeframe
4 times per year

Heart failure is nowadays a common condition associated with high mortality and increased healthcare-related costs. Over the years, the research on heart failure management has been extensive in order to better diagnose and treat the condition. Since the progression of left ventricular dysfunction is a consequence of myocardial inflammation, apopotosis, and fibrosis leading to myocardium remodelling, several molecules that are involved in the inflammation pathways have been explored as possible biomarkers for the condition. The study of biomarkers and their key roles in inflammation could allow early identification of patients with heart failure, improve prognostic assessment, and provide a target for future therapies. Among currently studied biomarkers, extensive research has been conducted on galectin-3, a galactoside-binding lectin, which is synthetised and secreted when cardiomyocytes and fibroblasts are submitted to mechanical stress. Accordingly, it has been hypothesised that galectin-3 could be a promoter of left ventricular dysfunction. Galectin-3 has been shown to mediate inflammation by several different pathways which are further detailed in the current review. Also, we aimed to provide a comprehensive overview of existing evidence on the utility of galectin-3 in clinical settings associated with heart failure.


1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016 Aug; 18(8):891-975. DOI: 10.1002/ejhf.59210.1002/ejhf.59227207191Search in Google Scholar

2. Kramer DG, Trikalinos TA, Kent DM, Antonopoulos GV, Konstam MA, Udelson JE. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach. J Am Coll Cardiol. 2010 Jul; 56(5):392-406. DOI: 10.1016/j.jacc.2010.05.01110.1016/j.jacc.2010.05.011452322120650361Open DOISearch in Google Scholar

3. Gandhi MS, Kamalov G, Shahbaz AU, Bhattacharya SK, Ahokas RA, Sun Y, et al. Cellular and molecular pathways to myocardial necrosis and replacement fibrosis. Heart Fail Rev. 2011 Jan; 16(1):23-34. DOI: 10.1007/s10741-010-9169-310.1007/s10741-010-9169-3292034220405318Open DOISearch in Google Scholar

4. Gattoni S, Røe ÅT, Aronsen JM, Sjaastad I, Louch WE, Smith NP, et al. Compensatory and decompensatory alterations in cardiomyocyte Ca2+ dynamics in hearts with diastolic dysfunction following aortic banding. J Physiol. 2017 Jun; 595(12):3867-89. DOI: 10.1113/JP27387910.1113/JP273879547138728542952Open DOISearch in Google Scholar

5. Ibe W, Saraste A, Lindemann S, Bruder S, Buerke M, Darius H, et al. Cardiomyocyte apoptosis is related to left ventricular dysfunction and remodelling in dilated cardiomyopathy, but is not affected by growth hormone treatment. Eur J Heart Fail. 2007 Feb; 9(2):160-7. DOI: 10.1016/j.ejheart.2006.06.00210.1016/j.ejheart.2006.06.00216890485Open DOISearch in Google Scholar

6. Hynes B, Kumar AH, O’Sullivan J, Klein Buneker C, Leblond AL, Weiss S, et al. Potent endothelial progenitor cell-conditioned media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1. Eur Heart J. 2013 Mar; 34(10):782-9. DOI: 10.1093/eurheartj/ehr43510.1093/eurheartj/ehr43522173909Search in Google Scholar

7. Ohtani T, Mohammed SF, Yamamoto K, Dunlay SM, Weston SA, Sakata Y, et al. Diastolic stiffness as assessed by diastolic wall strain is associated with adverse remodelling and poor outcomes in heart failure with preserved ejection fraction. Eur Heart J. 2012 Jul; 33(14):1742-9. DOI: 10.1093/eurheartj/ehs13510.1093/eurheartj/ehs135353039022645191Open DOISearch in Google Scholar

8. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004 Feb; 350(7):655-63. DOI: 10.1056/NEJMoa03199410.1056/NEJMoa03199414960742Search in Google Scholar

9. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004 Nov; 110(19):3121-8. DOI: 10.1161/01. CIR.0000147181.65298.4DSearch in Google Scholar

10. Lok DJ, Van Der Meer P, de la Porte PW, Lipsic E, Van Wijngaarden J, Hillege HL, et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol. 2010 May; 99(5):323-8. DOI: 10.1007/s00392-010-0125-y10.1007/s00392-010-0125-y285879920130888Search in Google Scholar

11. Zile MR, Jhund PS, Baicu CF, Claggett BL, Pieske B, Voors AA, et al. Plasma biomarkers reflecting profibrotic processes in heart failure with a preserved ejection fraction: data from the prospective comparison of ARNI with ARB on management of heart failure with preserved ejection fraction study. Circ Heart Fail. 2016 Jan; 9(1). pii: e002551. DOI: 10.1161/CIRCHEARTFAILURE.115.00255110.1161/CIRCHEARTFAILURE.115.002551548525626754625Open DOISearch in Google Scholar

12. Lopez-Andrès N, Rossignol P, Iraqi W, Fay R, Nuée J, Ghio S, et al. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CAREHF (Cardiac Resynchronization in Heart Failure) trial. Eur J Heart Fail. 2012 Jan; 14(1):74-81. DOI: 10.1093/eurjhf/hfr15110.1093/eurjhf/hfr151Open DOISearch in Google Scholar

13. Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P, et al. Galectin-3 predicts response to statin therapy in the controlled rosuvastatin multinational trial in heart failure (CORONA). Eur Heart J. 2012 Sep; 33(18):2290-6. DOI: 10.1093/eurheartj/ehs07710.1093/eurheartj/ehs077Open DOISearch in Google Scholar

14. de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, et al. Predictive value of plasma galectin- 3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011 Feb; 43(1):60-8. DOI: 10.3109/07853890.2010.53808010.3109/07853890.2010.538080Search in Google Scholar

15. Grandin EW, Jarolim P, Murphy SA, Ritterova L, Cannon CP, Braunwald E, et al. Galectin-3 and the development of heart failure after acute coronary syndrome: pilot experience from PROVE IT-TIMI 22. Clin Chem. 2012 Jan; 58(1):267-73. DOI: 10.1373/clinchem.2011.17435910.1373/clinchem.2011.174359Open DOISearch in Google Scholar

16. Sharon N, Lis H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 2004 Nov; 14 (11):53R-62R. DOI: 10.1093/glycob/cwh12210.1093/glycob/cwh122Open DOISearch in Google Scholar

17. Barondes SH, Cooper DN, Gitt MA, Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 1994 Aug; 269 (33):20807-10.10.1016/S0021-9258(17)31891-4Search in Google Scholar

18. Boscher C, Dennis JW, Nabi IR. Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol. 2011 Aug; 23 (4):383-92. DOI: 10.1016/j.ceb.2011.05.00110.1016/j.ceb.2011.05.00121616652Open DOISearch in Google Scholar

19. Miller MC, Ippel H, Suylen D, Klyosov AA, Traber PG, Hackeng T, et al. Binding of polysaccharides to humangalectin- 3 at a noncanonical site in its carbohydrate recognition domain. Glycobiology. 2016 Jan; 26(1):88-99. DOI: 10.1093/glycob/cwv07310.1093/glycob/cwv073485171626646771Open DOISearch in Google Scholar

20. Barboni EA, Bawumia S, Henrick K, Hughes RC. Molecular modeling and mutagenesis studies of the N-terminal domains of galectin-3: evidence for participation with the C-terminal carbohydrate recognition domain in oligosaccharide binding. Glycobiology. 2000 Nov; 10(11):1201-8. DOI: 10.1093/glycob/10.11.120110.1093/glycob/10.11.120111087712Search in Google Scholar

21. Halimi H, Rigato A, Byrne D, Ferracci G, Sebban-Kreuzer C, Elantak L, et al. Glycan dependence of galectin- 3 self-association properties. PLoS One. 2014 Nov; 9(11):e111836. DOI: 10.1371/journal.pone.011183610.1371/journal.pone.0111836421978625369125Search in Google Scholar

22. Liu FT, Rabinovich GA. Galectins: regulators of acute and chronic inflammation. Ann N Y Acad Sci. 2010 Jan; 1183:158-82. DOI: 10.1111/j.1749-6632.2009.05131.x10.1111/j.1749-6632.2009.05131.xOpen DOISearch in Google Scholar

23. Diehl C, Engström O, Delaine T, Håkansson M, Genheden S, Modig K, et al. Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3. J Am Chem Soc. 2010 Oct; 132(41):14577-89. DOI: 10.1021/ja105852y10.1021/ja105852yOpen DOISearch in Google Scholar

24. Mazurek N, Conklin J, Byrd JC, Raz A, Bresalier RS. Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. J Biol Chem. 2000 Nov; 275(46):36311-5. DOI: 10.1074/jbc.M00383120010.1074/jbc.M003831200Search in Google Scholar

25. Raimond J, Zimonjic DB, Mignon C, Mattei M, Popescu NC, Monsigny M, et al. Mapping of the galectin- 3 gene (LGALS3) to human chromosome 14 at region 14q21-22. Mamm Genome. 1997 Sep;8(9):706-7. DOI: 10.1007/s00335990054810.1007/s003359900548Open DOISearch in Google Scholar

26. Gaudin JC, Mehul B, Hughes RC. Nuclear localisation of wild type and mutant galectin-3 in transfected cells. Biol Cell. 2000 Jan; 92(1):49-58. DOI: 10.1016/S0248- 4900(00)88763-810.1016/S0248-4900(00)88763-8Open DOISearch in Google Scholar

27. Davidson PJ, Davis MJ, Patterson RJ, Ripoche MA, Poirier F, Wang JL. Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology. 2002 May 12(5):329-37. DOI: 10.1093/glycob/12.5.32910.1093/glycob/12.5.329Open DOISearch in Google Scholar

28. Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta. 2002 Sep; 1572(2- 3):263-73. DOI: 10.1016/S0304-4165(02)00313-610.1016/S0304-4165(02)00313-6Open DOISearch in Google Scholar

29. Patterson RJ, Haudek KC, Voss PG, Wang JL. Examination of the role of galectins in pre-mRNA splicing. Methods Mol Biol. 2015; 1207:431-49. DOI: 10.1007/978-1-4939-1396-1_2810.1007/978-1-4939-1396-1_2825253157Open DOISearch in Google Scholar

30. More SK, Chiplunkar SV, Kalraiya RD. Galectin-3-induced cell spreading and motility relies on distinct signaling mechanisms compared to fibronectin. Mol Cell Biochem. 2016 May; 416(1-2):179-91. DOI: 10.1007/s11010-016-2706-110.1007/s11010-016-2706-127130204Open DOISearch in Google Scholar

31. Hsu DK, Yang RY, Saegusa J, Liu FT. Analysis of the intracellular role of galectins in cell growth and apoptosis. Methods Mol Biol. 2015; 1207:451-63. DOI: 10.1007/978-1-4939-1396-1_2910.1007/978-1-4939-1396-1_29456398725253158Open DOISearch in Google Scholar

32. Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, et al. When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry. 2011 Sep;50(37):7842-57. DOI: 10.1021/bi201121m10.1021/bi201121m342993921848324Open DOISearch in Google Scholar

33. Zhu W, Sano H, Nagai R, Fukuhara K, Miyazaki A, Horiuchi S. The role of galectin-3 in endocytosis of advanced glycation end products and modified low density lipoproteins. Biochem Biophys Res Commun. 2001 Feb; 280(4):1183-8. DOI: 10.1006/bbrc.2001.425610.1006/bbrc.2001.425611162652Search in Google Scholar

34. Karlsson A, Christenson K, Matlak M, Bjorstad A, Brown KL, Telemo E, et al. Galectin-3 functions as an opsonin and enhances the macrophage clearance of apoptotic neutrophils. Glycobiology. 2009 Jan; 19(1):16-20. DOI: 10.1093/glycob/cwn10410.1093/glycob/cwn10418849325Open DOISearch in Google Scholar

35. Chen HY, Weng IC, Li CS, Wan L, Liu FT. Examination of galectins in phagocytosis. Methods Mol Biol. 2015; 1207:201-13. DOI: 10.1007/978-1-4939-1396-1_1310.1007/978-1-4939-1396-1_13459606125253142Open DOISearch in Google Scholar

36. Lin X, Yang P, Reece EA, Yang P. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis. Am J Obstet Gynecol. 2017 Aug; 217(2):216.e1-216.e13. DOI: 10.1016/j.ajog.2017.04.00810.1016/j.ajog.2017.04.008578733828412087Open DOISearch in Google Scholar

37. Fukumori T, Takenaka Y, Yoshii T, Kim HR, Hogan V, Inohara H, et al. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 2003 Dec 1; 63(23):8302-11.Search in Google Scholar

38. Danella Polli C, Alves Toledo K, Franco LH, Sammartino Mariano V, de Oliveira LL, Soares Bernardes E, Roque-Barreira MC, et al. Monocyte migration driven by galectin3 occurs though distinct mechanisms involving selective interactions with the extracellular matrix. ISRN Inflamm. 2013 Feb; 2013:259256.10.1155/2013/259256376735224049657Search in Google Scholar

39. Gao X, Balan V, Tai G, Raz A. Galectin-3 induces cell migration via a calcium-sensitive MAPK/ERK1/2 pathway. Oncotarget. 2014 Apr; 5(8):2077-84. DOI: 10.18632/oncotarget.178610.18632/oncotarget.1786403914624809457Open DOISearch in Google Scholar

40. Hsu DK, Chernyavsky AI, Chen HY, Yu L, Grando SA, Liu FT. Endogenous galectin-3 is localized in membrane lipid rafts and regulates migration of dendritic cells. J Invest Dermatol. 2009 Mar; 129(3):573-83. DOI: 10.1038/jid.2008.27610.1038/jid.2008.276264523318843294Open DOISearch in Google Scholar

41. Roubille F, Busseuil D, Merlet N, Kritikou EA, Rhéaume E, Tardif JC. Investigational drugs targeting cardiac fibrosis. Expert Rev Cardiovasc Ther. 2014 Jan; 12(1):111-25. DOI: 10.1586/14779072.2013.83994210.1586/14779072.2013.83994224218990Open DOISearch in Google Scholar

42. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 2004 Nov; 110(19):3121-8. DOI: 10.1161/01. CIR.0000147181.65298.4DSearch in Google Scholar

43. Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B, et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail. 2013 Jan; 6(1):107-17. DOI: 10.1161/CIRCHEARTFAILURE. 112.97116810.1161/CIRCHEARTFAILURE.112.97116823230309Open DOISearch in Google Scholar

44. Frenay AR, Yu L, van der Velde AR, Vreeswijk-Baudoin I, López-Andrés N, van Goor H, et al. Pharmacological inhibition of galectin-3 protects against hypertensive nephropathy. Am J Physiol Renal Physiol. 2015 Mar; 308(5):F500-9. DOI: 10.1152/ajprenal.00461.201410.1152/ajprenal.00461.2014Open DOISearch in Google Scholar

45. Calvier L, Miana M, Reboul P, Cachofeiro V, Martinez- Martinez E, de Boer RA, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013 Jan; 33(1):67-75. DOI: 10.1161/ATVBAHA.112.30056910.1161/ATVBAHA.112.300569Open DOISearch in Google Scholar

46. Kamal FA, Watanabe K, Ma M, Abe Y, Elbarbary R, Kodama M, Aizawa Y.A novel phenylpyridazinone, T-3999, reduces the progression of autoimmune myocarditis to dilated cardiomyopathy. Heart Vessels. 2011 Jan; 26(1):81-90. DOI: 10.1007/s00380-010-0018-z10.1007/s00380-010-0018-zOpen DOISearch in Google Scholar

47. Dvořánková B, Szabo P, Lacina L, Gal P, Uhrova J, Zima T, et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011; 194(6):469-80. DOI: 10.1159/00032486410.1159/000324864Open DOISearch in Google Scholar

48. Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A. 2006 Mar; 103(13):5060-5. DOI: 10.1073/pnas.051116710310.1073/pnas.0511167103Open DOISearch in Google Scholar

49. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 2008 Feb; 172(2):288-98. DOI: 10.2353/ajpath.2008.07072610.2353/ajpath.2008.070726Open DOISearch in Google Scholar

50. van Kimmenade RR, Januzzi JL, Jr., Ellinor PT, Sharma UC, Bakker JA, Low AF, et al. Utility of amino-terminal probrain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006 Sep; 48(6):1217-24. DOI: 10.1016/j.jacc.2006.03.06110.1016/j.jacc.2006.03.061Open DOISearch in Google Scholar

51. Edelmann F, Holzendorf V, Wachter R, Nolte K, Schmidt AG, Kraigher-Krainer E, et al. Galectin-3 in patients with heart failure with preserved ejection fraction: results from the Aldo-DHF trial. Eur J Heart Fail. 2015 Feb; 17(2):214-23. DOI: 10.1002/ejhf.20310.1002/ejhf.203Open DOISearch in Google Scholar

52. Mueller T, Gegenhuber A, Leitner I, Poelz W, Haltmayer W, Dieplinger B. Diagnostic and prognostic accuracy of galectin-3 and soluble ST2 for acute heart failure. Clin Chim Acta. 2016 Dec; 463:158-64. DOI: 10.1016/j.cca.2016.10.03410.1016/j.cca.2016.10.034Open DOISearch in Google Scholar

53. Mohammed LA, Gafar HS, Hussien NR. Galectin-3 as Early Detector of Heart Failure in Children with Congenital Acyanotic Heart Disease. Clin Med Diagn. 2014: 4(5):90-8.Search in Google Scholar

54. Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, Latini R, et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008 Oct; 372(9645):1231-9. DOI: 10.1016/ S0140-6736(08)61240-410.1016/S0140-6736(08)61240-4Open DOISearch in Google Scholar

55. Rogers JK, Jhund PS, Perez AC, Böhm M, Cleland JG, Gullestad L, et al. Effect of rosuvastatin on repeat heart failure hospitalizations: the CORONA Trial (Controlled Rosuvastatin Multinational Trial in Heart Failure).JACC Heart Fail. 2014 Jun; 2(3):289-97. DOI: 10.1016/j.jchf.2013.12.00710.1016/j.jchf.2013.12.00724952697Open DOISearch in Google Scholar

56. Anand IS, Rector TS, Kuskowski M, Adourian A, Muntendam P, Cohn JN. Baseline and serial measurements of galectin- 3 in patients with heart failure: relationship to prognosis and effect of treatment with valsartan in the Val-HeFT. Eur J Heart Fail. 2013 May; 15(5):511-8. DOI: 10.1093/eurjhf/hfs20510.1093/eurjhf/hfs20523291728Search in Google Scholar

57. Edelmann F, Holzendorf V, Wachter R, Nolte K, Schmidt AG, Kraigher-Krainer E, et al. Galectin-3 in patients with heart failure with preserved ejection fraction: results from the Aldo-DHF trial. Eur J Heart Fail. 2015 Feb; 17(2):214-23. DOI: 10.1002/ejhf.20310.1002/ejhf.20325418979Open DOISearch in Google Scholar

58. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014 Apr; 370(15):1383-92. DOI: 10.1056/NEJMoa131373110.1056/NEJMoa131373124716680Open DOISearch in Google Scholar

59. AbouEzzeddine OF, Haines P, Stevens S, Nativi-Nicolau J, Felker GM, Borlaug BA, et al. Galectin-3 in heart failure with preserved ejection fraction. A RELAX trial substudy (Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Diastolic Heart Failure). JACC Heart Fail. 2015 Mar; 3(3):245-52. DOI: 10.1016/j.jchf.2014.10.009\10.1016/j.jchf.2014.10.009436967525742762Open DOISearch in Google Scholar

60. Stolen CM, Adourian A, Meyer TE, Stein KM, Solomon SD. Plasma galectin-3 and heart failure outcomes in MADIT-CRT (multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy). J Card Fail. 2014 Nov; 20(11):793-9. DOI: 10.1016/j.cardfail.2014.07.01810.1016/j.cardfail.2014.07.01825106783Open DOISearch in Google Scholar

61. Milting H, Ellinghaus P, Seewald M, Cakar H, Bohms B, Kassner A, et al. Plasma biomarkers of myocardial fibrosis and remodeling in terminal heart failure patients supported by mechanical circulatory support devices. J Heart Lung Transplant. 2008 Jun; 27(6):589-96. DOI: 10.1016/j.healun.2008.02.01810.1016/j.healun.2008.02.01818503956Open DOISearch in Google Scholar

62. Erkilet G, Schulte-Eistrup S, Morshuis M, Bohms B, Roefe D, Gummert J, et al. Plasma galectin 3 is increased in terminal heart failure patients and is elevated in patients not surviving mechanical circulatory support. J Heart Lung Transplant. 2010 Feb; 29(2):S65. DOI: 10.1016/j.healun.2009.11.19110.1016/j.healun.2009.11.191Open DOISearch in Google Scholar

63. Coromilas E, Que-Xu EC, Moore D, Kato TS, Wu C, Ji R, et al. Dynamics and prognostic role of galectin-3 in patients with advanced heart failure, during left ventricular assist device support and following heart transplantation. BMC Cardiovasc Disord. 2016 Jun; 16:138. DOI: 10.1186/s12872-016-0298-z10.1186/s12872-016-0298-z490670427301475Open DOISearch in Google Scholar

64. Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL.Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail. 2010 Aug; 12(8):826-32. DOI: 10.1093/eurjhf/hfq09110.1093/eurjhf/hfq091291304820525986Search in Google Scholar

65. Baldenhofer G, Zhang K, Spethmann S, Laule M, Eilers B, Leonhardt F, et al. Galectin-3 predicts short- and long-term outcome in patients undergoing transcatheter aortic valve implantation (TAVI). Int J Cardiol. 2014 Dec; 177(3):912-7. DOI: 10.1016/j.ijcard.2014.10.01010.1016/j.ijcard.2014.10.01025456698Open DOISearch in Google Scholar

66. Felker GM, Fiuzat M, Shaw LK, Clare R, Whellan DJ, Bettari L, et al. Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail. 2012 Jan; 5(1):72-8. DOI: 10.1161/CIRCHEARTFAILURE. 111.963637Search in Google Scholar

67. de Boer RA, van Veldhuisen DJ, Gansevoort RT, Muller Kobold AC, van Gilst WH, Hillege HL, et al. The fibrosis marker galectin-3 and outcome in the general population. J Intern Med. 2012 Jul; 272(1):55-64. DOI: 10.1111/j.1365-2796.2011.02476.x10.1111/j.1365-2796.2011.02476.x22026577Open DOISearch in Google Scholar

68. Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012 Oct; 60(14):1249-56. DOI: 10.1016/j.jacc.2012.04.05310.1016/j.jacc.2012.04.053351209522939561Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo