1. bookVolume 21 (2013): Issue 1 (March 2013)
Journal Details
First Published
08 Aug 2013
Publication timeframe
4 times per year
access type Open Access

What about microparticles? Perspectives and practical aspects

Journal Details
First Published
08 Aug 2013
Publication timeframe
4 times per year

The first description of microparticles dates back to 1967, when Wolf reported platelet membrane fragments in human plasma and called them “platelet dust”. These vesicles were later called microparticles and the knowledge about their characterization and function has advanced since then. The generation of microparticles represents a mechanism of intercellular communication, playing various roles in both physiological and pathological conditions. Besides other multiple roles in pathology such as inflammation, atherogenesis and cancer spreading, platelet-derived microparticles are involved in thrombogenesis. Tissue factor and phosphatidylserine are both exposed on the outer membrane of platelet-derived microparticles, providing catalytic procoagulant surfaces. The evaluation of microparticles may represent a possible investigation and diagnostic tool. Their enumeration and characterization is challenging and flow cytometry remains the most widely used method for the analysis of microparticles. The aim of the authors is to review the most relevant information on the main properties, mechanisms of generation, and clinical relevance of platelet-derived microparticles, since their evaluation is increasingly considered as a diagnostic biomarker.


Cuvinte cheie

1. Diamant M, Tushuizen ME, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest. 2004;34:392-401Search in Google Scholar

2. Boilard E, Nigrovic PA, Larabee K, Watts GFM, Coblyn JS, Weinblatt ME, et al. Platelets amplify inflammation in arthritis via collagen dependent microparticle production. Science. 2010; 327(5965): 580-310.1126/science.1181928292786120110505Search in Google Scholar

3. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009; 9:581-9310.1038/nri256719498381Search in Google Scholar

4. del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA. Tissue factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005; 106:1604-1110.1182/blood-2004-03-109515741221Search in Google Scholar

5. Orozco AF, Lewis DE. Flow cytometric analysis of circulating microparticles in plasma. Cytometry. 2010; 77A (6):502-1410.1002/cyto.a.20886291989420235276Search in Google Scholar

6. Nieuwland R, Sturk A. Why do cells release vesicles?. Thromb Res. 2010 Feb; 125: S49-5110.1016/j.thromres.2010.01.03720149923Search in Google Scholar

7. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008; 3:e369410.1371/journal.pone.0003694257789119002258Search in Google Scholar

8. Jonas R, Nilsson A, Balaj L, Hulleman E, van Rijn S, Pegtel DM, et al. Blood platelets contain tumor-derived RNA biomarkers. Blood. 2011; 118: 3680-310.1182/blood-2011-03-344408722463721832279Search in Google Scholar

9. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 2012; 64(3): 676-70510.1124/pr.112.00598322722893Search in Google Scholar

10. Shantsila E, Kamphuisen PW, Lip GY. Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J Thromb Haemost 2010; 8:2358-6810.1111/j.1538-7836.2010.04007.x20695980Search in Google Scholar

11. Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood. 2008; 111: 5028-3610.1182/blood-2007-06-097410238413118198347Search in Google Scholar

12. Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev 2006; 20:1-2610.1016/j.tmrv.2005.08.001Search in Google Scholar

13. Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, et al. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood. 2009; 114: 723-3210.1182/blood-2009-02-205930Search in Google Scholar

14. Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumor progression. Cell Cycle. 2009; 8: 2014-1810.4161/cc.8.13.8988Search in Google Scholar

15. Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A. Cell derived microparticles in haemostasis and vascular medicine. Thromb Haemost. 2009; 101:439-5110.1160/TH08-08-0521Search in Google Scholar

16. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967; 13: 269-8810.1111/j.1365-2141.1967.tb08741.xSearch in Google Scholar

17. Horstman LL, Ahn YS. Platelet microparticles: a wide-angle perspective. Crit Rev Oncol Hematol 1999; 30: 111-4210.1016/S1040-8428(98)00044-4Search in Google Scholar

18. Dignat George F. Microparticles in vascular diseases. Thromb Res 2008; 122; Suppl 1, S55-910.1016/S0049-3848(08)70020-3Search in Google Scholar

19. Ye R, Ye C, Huang Y, Liu L, Wang S. Circulating tissue factor positive microparticles in patients with acute recurrent deep venous thrombosis. 2012; 130:253-8Search in Google Scholar

20. Freyssinet JM, Toti F. Formation of procoagulant microparticles and properties. Thromb Res. 2010;125(Suppl 1): S46-810.1016/j.thromres.2010.01.036Search in Google Scholar

21. Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A. The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol. 2010; 26(4): e140-e14510.1016/S0828-282X(10)70371-8Search in Google Scholar

22. Flaumenhaft R, Dilks JR, Richardson, Alden E, Patel-Hett SR, Battinelli E, et al. Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood. 2009; 113:1112-2110.1182/blood-2008-06-163832263507618802008Search in Google Scholar

23. Dasgupta SK, Le A, Chavakis, Rumbaut RE, Thiagarajan P. Developmental Endothelial Locus-1 (Del-1) mediates clearance of platelet microparticles by the Endothelium. Circulation. 2012; 125 (13): 1664-7210.1161/CIRCULATIONAHA.111.068833Search in Google Scholar

24. Shantsila E, Kamphuisen PW, Lip GY. Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J Thromb Haemost. 2010; 8(11):2358-6810.1111/j.1538-7836.2010.04007.xSearch in Google Scholar

25. Falanga A, Tartari CJ, Marchetti M. Microparticles in tumor progression. Thromb Res 2012; 129; Suppl 1, S132-610.1016/S0049-3848(12)70033-6Search in Google Scholar

26. Rak J. Microparticles in cancer. Semin Thromb Hemost. 2010; 36:888-90610.1055/s-0030-1267043Search in Google Scholar

27. Varon D, Hayon Y, Dashevsky O, Shai E. Involvment of platelet derived microparticles in tumor metastasis and tissue regeneration. Thromb Res 2012; 130: S98-910.1016/j.thromres.2012.08.289Search in Google Scholar

28. Castaman G, Yu-Feng L, Rodeghiero F. A bleeding disorder characterized by isolated deficiency of platelet microvesicle generation. Lancet 1996; 347:700-110.1016/S0140-6736(96)91259-3Search in Google Scholar

29. Castaman G, Yu-Feng L, Battistin E. Characterization of a novel bleeding disorder with isolated prolonged bleeding time and deficiency of platelet microvesicle generation. Br J Haematol 1997; 96:458-6310.1046/j.1365-2141.1997.d01-2072.x9054648Search in Google Scholar

30. Zwaal RF, Comfurius P, Bevers EM. Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids. Biochim Biophys Acta 2004; 1636:119-2810.1016/j.bbalip.2003.07.00315164759Search in Google Scholar

31. Ahn YS. Cell-derived microparticles:‘Miniature envoys with many faces’. J Thromb Hemost 2005; 3:884-710.1111/j.1538-7836.2005.01347.x15869581Search in Google Scholar

32. Rank A, Nieuwland R, Delker R, Kohler A, Toth B, Pihusch V, et al. Cellular origin of platelet-derived microparticles in vivo. Thromb Res. 2010; 126: e255-e25910.1016/j.thromres.2010.07.01220696467Search in Google Scholar

33. Lechner D, Weltermann A. Circulating tissue factorexposing microparticles. Thromb Res. 2008; 122 (Suppl.1):S47-5410.1016/S0049-3848(08)70019-7Search in Google Scholar

34. Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV, et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97(3):425-3410.1160/TH06-06-0313Search in Google Scholar

35. Jy W, Horstman LL, Jimenez JJ, Ahn YS, Biró E, Nieuwland R, et al. Measuring circulating cell-derived microparticles. J Thromb Haemost 2004; 2:1842-310.1111/j.1538-7836.2004.00936.xSearch in Google Scholar

36. Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol. 2007 Dec; 7(12):964-7410.1038/nri2214Search in Google Scholar

37. Castellana D, Totti F, Freyssinet JM. Membrane microvesicles: macromessengers in cancer disease and progression. Thromb Res. 2010; 125 (Suppl 2):S84-810.1016/S0049-3848(10)70021-9Search in Google Scholar

38. Campello E, Spiezia L, Radu CM, Bulato C, Castelli M, Gavasso S, et al. Endothelial, platelet, and tissue factor-bearing microparticles in cancer patients with and without venous thromboembolism. Thromb Res. 2011; 127(5):473-710.1016/j.thromres.2011.01.002Search in Google Scholar

39. Basavaraj MG, Olsen JO, Osterud B, Hansen JB. Differential ability of tissue factor antibody clones on detection of tissue factor in blood cells and microparticles. Thromb Res. 2012; 130:538-14 10.1016/j.thromres.2012.06.001Search in Google Scholar

40. Key NS. Analysis of tissue factor positive microparticles. Thromb Res. 2010; 125:S42-510.1016/j.thromres.2010.01.035Search in Google Scholar

41. Ruf W. Tissue factor and cancer. Thromb Res. 2012; S84-710.1016/j.thromres.2012.08.285Search in Google Scholar

42. Zwicker JI. Predictive value of tissue factor bearing microparticles in cancer associated thrombosis. Thromb Res.2010; 125(Suppl.2):S89-9110.1016/S0049-3848(10)70022-0Search in Google Scholar

43. Chitlur M, Massicotte MP. The perfect measure of hemostasis: a quest for the holy grail. Thromb Res. 2010; 125(6): 481-210.1016/j.thromres.2009.08.022Search in Google Scholar

44. Favaloroa EJ, Lippi G. Coagulation update: what’s new in hemostasis testing? Thromb Res. 2011; 127; Suppl. 2 :S13-S610.1016/S0049-3848(10)70148-1Search in Google Scholar

45. Siljander PRM. Platelet-derived microparticles - an updated perspective. Thromb Res. 2011; 127:S30-310.1016/S0049-3848(10)70152-3Search in Google Scholar

46. Lawrie AS, Albanyan A, Cardigan RA, Mackie IJ, Harrison P. Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sang.2009; 96(3):206-1210.1111/j.1423-0410.2008.01151.x19175566Search in Google Scholar

47. Yuana Y, Oosterkamp TH, Bahatyrova S...Atomic force microscopy: a novel approach to the detection of nano-sized blood microparticles. J Thromb Haemost. 2010; 8(2):315-2310.1111/j.1538-7836.2009.03654.x19840362Search in Google Scholar

48. Gross PL, Vaezzadeh N. Tissue factor microparticles and haemophilia. Thromb Res.2010; 125:S67-910.1016/j.thromres.2010.01.04120171716Search in Google Scholar

49. Dignat-George F, Feyssinet JM, Key NS. Centrifugation is a crucial step impacting microparticle measurement. Platelets. 2009 ; 20(3):225-610.1080/0953710090279550019437341Search in Google Scholar

50. Ayers L, Kohler M, Harrison P, Sargent I, Dragovic R, Schaap M, et al. Measurement of circulating cell-derived microparticles by flow cytometry: Sources of variability within the assay. Thromb Res 2011; 127:370-710.1016/j.thromres.2010.12.01421257195Search in Google Scholar

51. Lacroix R, Judicone C, Poncelet P, Robert S, Arnaud L, Sampol J et al. Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost 2012; 10:437-4610.1111/j.1538-7836.2011.04610.x22212198Search in Google Scholar

52. Robert S, Poncelet P, Lacroix R, Arnaud L, Giraudo L, Hauchard A, et al. Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies? J Thromb Haemost. 2009; 7(1):190-7Search in Google Scholar

53. Trummer A, De Rop C, Tiede A, Ganser A, Eisert R. Isotype controls in phenotyping and quantification of microparticles: A major source of error and how to evade it. Thromb Res 2008; 122:691-70010.1016/j.thromres.2008.01.00518304614Search in Google Scholar

54. György B, Módos K, Pállinger E, Pálóczi K, Pásztói M, Misják P et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 2011; 117(4):e39-4810.1182/blood-2010-09-30759521041717Search in Google Scholar

55. Williams JC, Mackman N. MPs or ICs? Blood. 2011; 117: 1101-2Search in Google Scholar

56. Mobarrez F, Antovic J, Egberg N, Hansson M, Jorneskog G, Hultenby K et al. A multicolor flow cytometric assay for measurement of platelet-derived microparticles. Thromb Res 2010; 125:e110-610.1016/j.thromres.2009.10.00619939440Search in Google Scholar

57. Hind E, Heugh S, Ansa-Addo EA, Antwi-Baffour S, Lange S, Inal J. Red cell PMVs, plasma membrane-derived vesicles calling out for standards. Biochem Biophys Res Commun 2010; 399: 465-9 10.1016/j.bbrc.2010.07.09520674549Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo