1. bookVolume 24 (2016): Issue 4 (December 2016)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Inhibitory effects on the HMG-CoA Reductase in the chemical constituents of the Cassia mimosoides Linn

Published Online: 30 Dec 2016
Page range: 413 - 422
Received: 31 Jan 2016
Accepted: 22 Oct 2016
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Cassia mimosoides Linn has been used from ancient times and used for treating hepatitis for its supposedly medically beneficial properties. In this study, different constituents of the Cassia mimosoides Linn (β-Sitosterol, Oleanolic Acid, Emodin, Carotene, Resorcinol, Luteolin, and α-L-Rhamnose) were evaluated for potential anti-HMG-CoA reductase effect. The inhibitory effects of HMG-CoA reductase of Cassia mimosoides Linn extracts and Pravastatin inhibitor at different concentrations (at doses of 1, 5, 25 or 125 μg/mL, respectively) in reaction system (70 mmol/L phosphate buffer, 200mmol/L NADPH, 5 μg HMG-CoA reductase, 2 mmol/L EDTA, 2 mmol/L cysteamine, 0.06% BSA) into 37°C preheat HMG-CoA for initiating this reaction, and then determined the change of HMG-CoA reductase activity (ΔAΔt) at 340 nm, the inhibition ratio of HMG-CoA reductase activity and its dynamic change of inhibitory effect within 15 min and the descent rate of NADPH. Emodin, Luteolin, β-Sitosterol, Oleanolic Acid, α-L-Rhamnose and Carotene showed good inhibition of HMG-CoA reductase activity. Among them, only the Emodin (1 and 5 μg/mL) groups showed a significant decrease of HMG-CoA reductase activity compared to the Pravastatin (1 and 5 μg/mL) groups respectively. In addition, the HMG-CoA reductase activity in the Emodin and Luteolin (25 and 125 μg/mL) groups was clearly lower than the Pravastatin (25 and 125 μg/mL) groups respectively. And the Emodin and Luteolin (1, 5, 25 or 125 μg/mL) groups exhibited a stable effect on inhibiting the HMG-CoA reductase within 15 min. These findings further support the exploration of Cassia mimosoides Linn as a potential agent for the treatment of hepatitis in future studies.

Keywords

1. Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: the Framingham Study. Am J Cardiol. 1976; 38(1):46-51. DOI: 10.1016/0002-9149(76)90061-8.10.1016/0002-9149(76)90061-8Search in Google Scholar

2. Rodriguez-Fernandez R, Rahajeng E, Viliani F, Kushadiwijaya H, Amiya RM, Bangs MJ. Noncommunicable disease risk factor patterns among mining industry workers in Papua, Indonesia: longitudinal findings from the Cardiovascular Outcomes in a Papuan Population and Estimation of Risk (COPPER) Study. Occup Environ Med. 2015;72(10):728-35. DOI: 10.1136/oemed-2014-102664.10.1136/oemed-2014-102664Search in Google Scholar

3. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2): 115-26. DOI: 10.1056/NEJM199901143400207.10.1056/NEJM199901143400207Search in Google Scholar

4. Zand Parsa A, Ashoori S, Abdollahi A. The Effect of Two Different Doses of Atorvastatin on Lipoprotein-a on Patients with Acute Coronary Syndrome. Iranian Journal of Pathology. 2012;7:101–6.Search in Google Scholar

5. LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart JC, et al. Treating to New Targets (TNT) Investigators. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005; 352(14):1425-35. DOI: 10.1056/NEJMoa050461.10.1056/NEJMoa050461Search in Google Scholar

6. Brown MS, Goldstein JL. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res. 1980;21(5):505-17.10.1016/S0022-2275(20)42221-7Search in Google Scholar

7. Carbonell T, Freire E. Binding thermodynamics of statins to HMG-CoA reductase. Biochemistry. 2005; 44(35):11741-8. DOI: 10.1021/bi050905v.10.1021/bi050905v16128575Search in Google Scholar

8. Friesen JA, Rodwell VW. The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol. 2004; 5(11):248. DOI: 10.1186/gb-2004-5-11-248.10.1186/gb-2004-5-11-24854577215535874Search in Google Scholar

9. Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation. 2000;101(2):207-13. DOI: 10.1161/01.CIR.101.2.207.10.1161/01.CIR.101.2.207Search in Google Scholar

10. Varghese GK, Bose LV, Habtemariam S. Antidiabetic components of Cassia alata leaves: identification through α-glucosidase inhibition studies. Pharm Biol. 2013;51(3):345-9. DOI: 10.3109/13880209.2012.729066.10.3109/13880209.2012.72906623137344Search in Google Scholar

11. Jaydeokar AV, Bandawane DD, Bibave KH, Patil TV. Hepatoprotective potential of Cassia auriculata roots on ethanol and antitubercular drug-induced hepatotoxicity in experimental models. Pharm Biol. 2014;52(3):344-55. DOI: 10.3109/13880209.2013.837075.10.3109/13880209.2013.83707524472085Search in Google Scholar

12. Mondal A, Karan SK, Singha T, Rajalingam D, Maity TK. Evaluation of Hepatoprotective Effect of Leaves of Cassia sophera Linn. Evid Based Complement Alternat Med. 2012; 2012:436139. DOI: 10.1155/2012/436139.10.1155/2012/436139336833522690244Search in Google Scholar

13. Cho IJ, Lee C, Ha TY. Hypolipidemic effect of soluble fiber isolated from seeds of Cassia tora Linn. in rats fed a high-cholesterol diet. J Agric Food Chem. 2007;55(4):1592-6. DOI: 10.1021/jf0622127.10.1021/jf062212717300158Search in Google Scholar

14. Zhang JD, Hu YJ, Zhang W, Huang XA, Zhang HL. Chemical Constituents of Cassia mimosoides Linn. Journal of Tropical and Subtropical Botany. 2009;17:80-2.Search in Google Scholar

15. Jung KA, Song TC, Han D, Kim IH, Kim YE, Lee CH. Cardiovascular protective properties of kiwifruit extracts in vitro. Biol Pharm Bull. 2005; 28(9):1782-5. DOI: 10.1248/bpb.28.1782.10.1248/bpb.28.178216141561Search in Google Scholar

16. Schointuch MN, Gilliam TP, Stine JE, Han X, Zhou C, Gehrig PA, Kim K, Bae-Jump VL. Simvastatin, an HMG-CoA reductase inhibitor, exhibits anti-metastatic and anti-tumorigenic effects in endometrial cancer. Gynecol Oncol. 2014;134(2): 346-55. DOI: 10.1016/j.ygyno.2014.05.015.10.1016/j.ygyno.2014.05.015412553624880141Search in Google Scholar

17. Soares RA, Mendonça S, de Castro LÍ, Menezes AC, Arêas JA. Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. Int J Mol Sci. 2015;16(2): 4150-60. DOI: 10.3390/ijms16024150.10.3390/ijms16024150434694925690031Search in Google Scholar

18. Nagy G, Farkas A, Csernetics Á, Bencsik O, Szekeres A, Nyilasi I, Vágvölgyi C, Papp T. Transcription of the three HMG-CoA reductase genes of Mucor circinelloides. MC Microbiol. 2014;14:93. DOI: 10.1186/1471-2180-14-93.10.1186/1471-2180-14-93403742724731286Search in Google Scholar

19. Wang GY, Keasling JD. Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metab Eng. 2002;4(3): 193-201. DOI: 10.1006/mben.2002.0225.10.1006/mben.2002.022512616689Search in Google Scholar

20. Burg JS, Espenshade PJ. Regulation of HMG-CoA reductase in mammals and yeast. Prog Lipid Res. 2011; 50(4): 403-10. DOI: 10.1016/j.plipres.2011.07.002.10.1016/j.plipres.2011.07.002318431321801748Search in Google Scholar

21. Wang X, Guan L, Zhao Y, Lei L, Liu Y, Ma KY, Wang L, Man SW, Wang J, Huang Y, Chen ZY. Plasma cholesterol-lowering activity of dietary dihydrocholesterol in hypercholesterolemia hamsters. Atherosclerosis. 2015; 242(1):77-86. DOI: 10.1016/j.atherosclerosis.2015.06.046.10.1016/j.atherosclerosis.2015.06.04626184696Search in Google Scholar

22. Wang W, He Y, Lin P, Li Y, Sun R, Gu W, Yu J, Zhao R. In vitro effects of active components of Polygonum Multiflorum Radix on enzymes involved in the lipid metabolism. J Ethnopharmacol. 2014;153(3):763-70. DOI: 10.1016/j.jep.2014.03.042.10.1016/j.jep.2014.03.04224680992Search in Google Scholar

23. Yan GL, Wen KR, Duan CQ. Enhancement of β-carotene production by over-expression of HMG-CoA reductase coupled with addition of ergosterol biosyn-thesis inhibitors in recombinant Saccharomyces cerevisiae. Curr Microbiol. 2012;64(2): 159-63. DOI: 10.1007/s00284-011-0044-9.10.1007/s00284-011-0044-922086347Search in Google Scholar

24. Han L, Lai P, Du JR. Deciphering molecular mechanism underlying hypolipidemic activity of echinocystic Acid. Evid Based Complement Alternat Med. 2014; 2014:823154. DOI: 10.1155/2014/823154.10.1155/2014/823154394228724669228Search in Google Scholar

25. Sá C, Oliveira AR, Machado C, Azevedo M, Pereira-Wilson C. Effects on Liver Lipid Metabolism of the Naturally Occurring Dietary Flavone Luteolin-7-glucoside. Evid Based Complement Alternat Med. 2015;2015:647832. DOI: 10.1155/2015/647832.10.1155/2015/647832446576926113868Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo