1. bookVolume 24 (2016): Issue 2 (June 2016)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Phenotypic and genotypic study of carbapenem-resistant Pseudomonas aeruginosa strains isolated from hospitalized patients

Published Online: 28 Jun 2016
Page range: 201 - 211
Received: 07 Oct 2015
Accepted: 10 May 2016
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Introduction: Nosocomial infections caused by Pseudomonas aeruginosa producing carbapenemases represent an important cause of morbidity and mortality among immunosuppressed patients. The aim of our study was to detect the production of metallo-carbapenemases (MBLs) by phenotypic methods and to detect the presence of the MBLs encoding genes (blaIMP and blaVIM) by PCR in P. aeruginosa strains isolated from hospitalized patients to the Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca.

Material and methods: Between September 2014-February 2015, we tested thirty-eight P. aeruginosa strains resistant to carbapenems according to CLSI 2014 breakpoints, determined by Vitek®2(BioMérieux),isolated from various clinical specimens. Phenotypic detection of the MBLs production was performed using the KPC/MBL Confirmation kit (ROSCO®) and the MBL Etest® IP/IPI (BioMérieux). We used the PCR method for detecting MBLs encoding genes: blaIMP, blaVIM.

Results: The strains were obtained from surgery (55.3%), ICU (15.8%) and gastroenterology wards (28.9%), isolated from pus (25.8%), tracheal secretion (22.7%), bile (13.6%), sputum (10.6%), blood (10.6%), other secretions (16.7%). These strains were resistant to multiple classes of antibiotics. By ROSCO® method 28/38 strains (73.7%) were positive with imipenem ± dipicolinic acid (DPA) and 22/38 (57.9%) with meropenem ± DPA. Etest® waspositive for the 28/38 strains (73.7%). 11 strains (28.9%) were positive for KPC with the screening method. We identified: 6 blaIMP+ (15.8%), 2 (5.3%) blaVIM+ and 4 blaIMP+/blaVIM+ strains (10.5%).

Conclusion: Both genes encoding MBL were found, alone or in combination. The increasing level of carbapenem resistance of these strains impose their routine testing to detect MBL.

Keywords

1. Deplano A, Denis O, Poirel L, Hocquet D, Nonhoff C, Byl B, et al. Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa. J Clin Microbiol. 2005 Mar;43(3):1198-204. DOI:10.1128/JCM.43.3.1198-1204.2005.10.1128/JCM.43.3.1198-1204.2005108129215750083Search in Google Scholar

2. Bartolini A, Frasson I, Cavallaro A, Richter SN, Palù G. Comparison of phenotypic methods for the detection of carbapenem non-susceptible Enterobacteriaceae. Gut Pathog. 2014;6:13. DOI:10.1186/1757-4749-6-13.10.1186/1757-4749-6-13403258424860620Search in Google Scholar

3. Bertoncheli C de M, Hörner R. Uma revisão sobre metalo-β-lactamases. Rev Bras Ciências Farm. 2008 Dec;44(4):577-99. DOI: 10.1590/S1516-93322008000400005.10.1590/S1516-93322008000400005Search in Google Scholar

4. Crespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, et al. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-beta-lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol. 2004 Nov;42(11):5094-101. DOI: 10.1128/JCM.42.11.5094-5101.2004.10.1128/JCM.42.11.5094-5101.200452521115528701Search in Google Scholar

5. Hall BG, Barlow M. Revised Ambler classification of β-lactamases. J Antimicrob Chemother. 2005;55(6):1050-1. DOI: 10.1093/jac/dki130.10.1093/jac/dki13015872044Search in Google Scholar

6. Marsik FJ, Nambiar S. Review of Carbapenemases and AmpC-beta lactamases. Pediatr Infect Dis J. 2011;30(12):1094-5. DOI: 10.1097/ INF.0b013e31823c0e47.10.1097/INF.0b013e31823c0e4722105420Search in Google Scholar

7. Meletis G, Exindari M, Vavatsi N, Sofianou D, Diza E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia. 2012 Oct;16(4):303-7.Search in Google Scholar

8. Cuzon G, Naas T, Villegas M-V, Correa A, Quinn JP, Nordmann P. Wide dissemination of Pseudomonas aeruginosa producing beta-lactamase blaKPC-2 gene in Colombia. Antimicrob Agents Chemother. 2011 Nov;55(11):5350-3. DOI: 10.1128/AAC.00297-11.10.1128/AAC.00297-11319502921844315Search in Google Scholar

9. Overturf GD, Carbapenemases: A Brief Review for Pediatric Infectious Disease Specialists. 2010 Jan.10.1097/INF.0b013e3181c9c11820035208Search in Google Scholar

10. Hirakata Y, Yamaguchi T, Nakano M, Izumikawa K, Mine M, Aoki S, et al. Clinical and bacteriological characteristics of IMP-type metallo-beta-lactamase- producing Pseudomonas aeruginosa. Clin Infect Dis. 2003 Jul;37(1):26-32. DOI: 10.1086/375594.10.1086/37559412830405Search in Google Scholar

11. ß-Lactamase Classification and Amino Acid Sequences for TEM, SHV and OXA Extended-Spectrum and Inhibitor Resistant Enzymes. Available from: http://www.lahey.org/studies/.Search in Google Scholar

12. Buchunde S, Mendiratta DK, Deotale V, Narang P. Comparison of disc and MIC reduction methods with polymerase chain reaction for the detection of metallo-β-lactamase in Pseudomonas aeruginosa. Indian J Med Microbiol. 2012 Jan;30(2):170-4. DOI: 10.4103/0255-0857.96683.10.4103/0255-0857.9668322664432Search in Google Scholar

13. Hansen F, Hammerum AM, Skov R, Haldorsen B, Sundsfjord A, Samuelsen O. Evaluation of the total MBL confirm kit (ROSCO) for detection of metallo-β-lactamases in Pseudomonas aeruginosa and Acinetobacter baumannii. Diagn Microbiol Infect Dis. 2014 Aug;79(4):486-8. DOI: 10.1016/j.diagmicrobio.2013.12.001.10.1016/j.diagmicrobio.2013.12.00124857168Search in Google Scholar

14. Tawfik AF, Shibl AM, Aljohi MA, Altammami MA, Al-Agamy MH. Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates. Burns. 2012 Sep;38(6):855-60. DOI: 10.1016/j. burns.2012.01.005.Search in Google Scholar

15. Cardoso O, Alves AF, Leitão R. Metallo-betalactamase VIM-2 in Pseudomonas aeruginosa isolates from a cystic fibrosis patient. Int J Antimicrob Agents. 2008 Apr;31(4):375-9. DOI: 10.1016/j.ijantimicag.2007.12.006.10.1016/j.ijantimicag.2007.12.00618276121Search in Google Scholar

16. Clinical and Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement. CLSI document M100-S24. Clsi. 2014.Search in Google Scholar

17. In FOR, Diagnostic V, Only USE. Rosco Diagnostica. 2013;(98019):1-3.Search in Google Scholar

18. Etest for Antimicrobial Resistance Detection (ARD) | bioMérieux Clinical Diagnostics.Search in Google Scholar

19. Fallah F, Borhan RS, Hashemi A. Detection of bla(IMP) and bla(VIM) metallo-β-lactamases genes among Pseudomonas aeruginosa strains. Int J Burns Trauma. 2013 Jan;3(2):122-4.Search in Google Scholar

20. Oliver A, Mulet X, López-Causapé C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat. Jan;21-22:41-59.10.1016/j.drup.2015.08.00226304792Search in Google Scholar

21. Hammoudi D, Ayoub Moubareck C, Karam Sarkis D. How to detect carbapenemase producers? A literature review of phenotypic and molecular methods. J Microbiol Methods. Elsevier B.V.; 2014;107:106-18.Search in Google Scholar

22. Cabot G, Ocampo-Sosa AA, Tubau F, Macia MD, Rodríguez C, Moya B, et al. Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: prevalence and impact on resistance in a Spanish multicenter study. Antimicrob Agents Chemother. 2011 May;55(5):1906-11. DOI: 10.1128/AAC.01645-10.10.1128/AAC.01645-10308823821357294Search in Google Scholar

23. Franco MRG, Caiaffa-Filho HH, Burattini MN, Rossi F. Metallo-beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics (Sao Paulo). 2010 Jan;65(9):825-9. DOI: 10.1590/S1807-59322010000900002.10.1590/S1807-59322010000900002295473121049207Search in Google Scholar

24. Zhao W-H, Hu Z-Q. Epidemiology and genetics of VIM-type metallo-β-lactamases in Gram-negative bacilli. Future Microbiol. Future Medicine Ltd London, UK; 2011 Mar;6(3):317-33.10.2217/fmb.11.1321449842Search in Google Scholar

25. Wang M, Borris L, Aarestrup FM, Hasman H. Identification of a Pseudomonas aeruginosa co-producing NDM-1, VIM-5 and VIM-6 metallo-β-lactamases in Denmark using whole-genome sequencing. Int J Antimicrob Agents. 2015 Mar;45(3):324-5. DOI: 10.1016/j.ijantimicag.2014.11.004.10.1016/j.ijantimicag.2014.11.00425542060Search in Google Scholar

26. Khosravi Y, Loke MF, Chua EG, Tay ST, Vadivelu J. Phenotypic detection of metallo-β-lactamase in imipenem-resistant Pseudomonas aeruginosa. ScientificWorldJournal. 2012 Jan;2012:654939.10.1100/2012/654939338559922792048Search in Google Scholar

27. Dolara P, Arrigucci S, Cassetta MI, Fallani S, Novelli A. Inhibitory activity of diluted wine on bacterial growth: The secret of water purification in antiquity. Int J Antimicrob Agents. 2005;26:338-40. DOI: 10.1016/j. ijantimicag.2005.07.001.Search in Google Scholar

28. Craciunas C, Butiuc-Keul A, Flonta M, Brad A, Sigarteu M. Application of molecular techniques to the study of Pseudomonas aeruginosa clinical isolate in Cluj-Napoca, Romania. Analele Univ. din Oradea - Fascicula Biologie. 2010 Jan 1; 17(2):243-247. Search in Google Scholar

29. Mereuţă AI, Tuchiluş C, Bădescu AC, Iancu LS. Metallo-beta-lactamase-mediated resistance among carbapenem-resistant Pseudomonas aeruginosa clinical isolates. Rev Med Chir Soc Med Nat Iasi. 2011 Jan;115(4):1208-13.Search in Google Scholar

30. Mereuţă AI, Bădescu AC, Dorneanu OS, Iancu LS, Tuchiluş CG. Spread of VIM-2 metallo-beta-lactamase in Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates from Iaşi, Romania. Rom Rev Lab Med. 2013 Dec;21(4):423-30. DOI: 10.2478/rrlm-2013-0035.10.2478/rrlm-2013-0035Search in Google Scholar

31. Gheorghe I, Czobor I, Chifiriuc MC, Borcan E, Ghiţă C, Banu O, et al. Molecular screening of carbapenemase-producing Gram-negative strains in Romanian intensive care units during a one year survey. J Med Microbiol. Microbiology Society; 2014 Oct;63(Pt 10):1303-10.10.1099/jmm.0.074039-025060972Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo