1. bookVolume 24 (2016): Issue 2 (June 2016)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Blood-based biomarkers in Alzheimer’s disease: an overview on proteomic and lipidomic approaches

Published Online: 28 Jun 2016
Page range: 143 - 152
Received: 16 Nov 2015
Accepted: 26 Mar 2016
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Alzheimer’s disease (AD) remains one of the most challenging pathologies since its etiology is not completely known, its progression is slow and there are no disease-changing pharmacological agents available yet. One other important characteristic is that the progression of AD pathology starts long before any symptoms are experienced by patients. This is where the need for early detection biomarkers comes from. Although there are biomarkers that have been intensely studied and are now included in research criteria, most of these biomarkers are either invasive or unaffordable. Blood-based biomarkers could be a viable alternative of accessible and acceptable biomarkers, and have been much studied in the past decade. Among them proteomics and lipidomics seem to be two most promising fields for biomarker development. The paper aims to offer an overview of developments in the field during the past 5 years highlighting the most promising biomarkers.

Keywords

1. Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimer’s and Dementia 2015;11(3):332. DOI: 10.1016/j.jalz.2015.02.003.10.1016/j.jalz.2015.02.003Search in Google Scholar

2. Saloni Tanna, 2004 Background Paper 6.11. Alzheimer Disease and other Dementias. Last updated February 20, 2013. Available at http://www.who.int/medicines/areas/priority_medicines/BP6_11Alzheimer.pdf.10.22233/20412495.0613.11Search in Google Scholar

3. Alzheimer Europe. The prevalence of Alzheimer in Europe. Available at: http://www.alzheimer-europe.org/Policyin-Practice2/Country-comparisons/The-prevalence-ofdementia-in-Europe. Last update: February 24, 2014.Search in Google Scholar

4. Hampel H, Prvulovic D, Teipel S, Jessen F, Luckhaus C, Frolich L, et al. The future of Alzheimer’s disease: the next 10 years. Prog Neurobiol. 2011 Dec; 95(4):718-28. DOI: 10.1016/j.pneurobio.2011.11.008.10.1016/j.pneurobio.2011.11.008Search in Google Scholar

5. Karran E, Hardy J. A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer Disease. Ann Neurol. 2014 Aug; 76(2):185-205. DOI: 10.1002/ana.24188.10.1002/ana.24188Search in Google Scholar

6. Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, et al. 11C-PIB PET assessment of change in fibrillary amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending- dose study. Lancet Neurol. 2010 Apr; 9(4):363-72. DOI: 10.1016/S1474-4422(10)70043-0.10.1016/S1474-4422(10)70043-0Search in Google Scholar

7. Karran E, Hardy J. Antiamyloid therapy for Alzheimer’s disease - are we on the right road? N Engl J Med. 2014 Jan 23; 370(4):377-8. DOI: 10.1056/NEJMe1313943.10.1056/NEJMe131394324450897Search in Google Scholar

8. Bier JC. Biomarkers of Alzheimer’s disease: concepts and clinical case. Rev Med Brux. 2013 Sep. 34(4):306-10.Search in Google Scholar

9. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 May; 7(3):263-9. DOI: 10.1016/j.jalz.2011.03.005.10.1016/j.jalz.2011.03.005331202421514250Search in Google Scholar

10. Kuwano R, Hara N. Personal genomics for Alzheimer’s disease. Brain Nerve. 2013 65(3):235-46.Search in Google Scholar

11. Ridge PG, Mukherjee S, Crane PK, Kauwe JS; Alzheimer’s Disease Genetics Consortium. Alzheimer’s disease: analyzing the missing heritability. PLoS One. 2013 Nov 7;8(11):e79771. DOI: 10.1371/journal. pone.0079771.Search in Google Scholar

12. Henriksen K, O’Bryant SE, Hampel H, Trojanowski JQ, Montine TJ, Jeromin A, et al. The future of bloodbased biomarkers for Alzheimer’s disease. Alzheimers Dement. 2014 Jan; 10(1):115-131. DOI: 10.1016/j. jalz.2013.01.013.Search in Google Scholar

13. Chalbot S, Zetterberg H, Blennow K, Fadby T, Andreasen N, Grundke-Igbal I, et al. Bloodcerebrospinal fluid barrier permeability in Alzheimer’s disease. J Alzheimers Dis. 2011; 25(3):505-15.10.3233/JAD-2011-101959313945021471645Search in Google Scholar

14. Teng E, Chow N, Hwang KS, Thompson PM, Gylys KH, Cole GM, et al. Low plasma ApoE levels are associated with smaller hippocampal size in the Alzheimer’s disease neuroimaging initiative cohort. Dement Geriatr Cogn Disord. 2015; 39(3-4):154-66. DOI: 10.1159/000368982.10.1159/000368982432393225547651Search in Google Scholar

15. Gupta VB, Laws SM, Villemagne VL, Ames D, Bush AI, Ellis KA, et al. Plasma apolipoprotein E and Alzheimer disease risk: the AIBL study of aging. Neurology. 2011 Mar 22; 76(12):1091-8. DOI: 10.1212/WNL.0b013e318211c352.10.1212/WNL.0b013e318211c35221422459Search in Google Scholar

16. Guo LH, Alexopoulos P, Wagenpfeil S, Kurz A, the Alzheimer’s Disease Neuroimaging Inititative, Perneczcky R. Plasma proteomics for the identification of Alzheimer’s disease. Alzheimer Dis Assoc Disord. 2013 Oct-Dec; 27(4):10. DOI: 10.1097/ WAD.0b013e31827b60d2.10.1097/WAD.0b013e31827b60d2362673823314060Search in Google Scholar

17. Marksteiner J, Imarhiagbe D, Defrancesco M, Deisenhammer EA, Kemmler G, Humpel C. Analysis of 27 vascular related proteins reveals that NT-proBNP is a potenatial biomarker for Alzheimer’s disease and mild cognitive impairment: a pilot-study. Exp Gerontol. 2014 Feb; 50:114-21. DOI: 10.1016/j.exger.2013.12.001.10.1016/j.exger.2013.12.001431283724333505Search in Google Scholar

18. Behnam S, A van Buchem M, JM de Craen A, Sigurdsson S, Zhang Q, Harris TB, et al. N-terminal pro-brain natriuretic peptide and abnormal brain aging. Neurology. 2015 Sept 1; 85(9):813-820. DOI: 10.1212/ WNL.0000000000001885.10.1212/WNL.0000000000001885455302326231259Search in Google Scholar

19. Hu WT, Holtzman DM, Fagan AM, Shaw LM, Perrin R, Arnold SE, et al. Plasma multyanalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology. 2012 Aug 28; 79(9):897-905. DOI: 10.1212/WNL.0b013e318266fa70.10.1212/WNL.0b013e318266fa70342584422855860Search in Google Scholar

20. Doecke JD, Laws SM, Faux NG, Wilson W, Burnham SC, Lam CP, et al. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol. 2012 Oct; 69(10):1318-25. DOI: 10.1001/archneurol.2012.1282.10.1001/archneurol.2012.1282628760622801742Search in Google Scholar

21. Bjorkgvist M, Ohlsson M, Minthon L, Hansson O. Evaluation of a previously suggested plasma biomarker panel to identify Alzheimer’s disease. PLoS One. 2012. 7(1): e29868. DOI: 10.1371/journal. pone.0029868.Search in Google Scholar

22. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, et al. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med. 2007 Nov; 13(11):1359-62. DOI: 10.1038/nm1653.10.1038/nm165317934472Search in Google Scholar

23. Hertze J, Nagga K, Minthon L, Hansson O. Changes in cerebrospinal fluid and blood plasma levels of IGFII and its binding proteins in Alzheimer’s disease: an observational study. BMC Neurol. 2014 Apr 1; 14:64. DOI: 10.1186/1471-2377-14-64.10.1186/1471-2377-14-64397383624685003Search in Google Scholar

24. Sotolongo-Grau O, Pesini P, Valero S, Lafuente A, Buendia M, Perez-Grijalba V, et al. Association between cell-bound blood amyloid-β(1-40) levels and hippocampus volume. Alzheimers Res Ther. 2014; 6(5):56. DOI: 10.1186/s13195-014-0056-3.10.1186/s13195-014-0056-3425552625484928Search in Google Scholar

25. Lewczuk P, Kornhuber J, Vanmechelen E, Peters O, Heuser I, Maier W, et al. Amyloid beta peptides in plasma in early diagnosis of Alzheimer’s disease: a multicenter study with multiplexing. Exp Neurol. 2010 Jun; 223(2):366-70. DOI: 10.1016/j.expneurol.2009.07.024.10.1016/j.expneurol.2009.07.02419664622Search in Google Scholar

26. Lui JK, Laws SM, Li QX, Villemagne VL, Ames D, Brown B, et al. Plasma amyloid-beta as a biomarker in Alzheimer’s disease: AIBL study of aging. J Alzheimers Dis. 2010; 20(4):1233-42.10.3233/JAD-2010-09024920413897Search in Google Scholar

27. Cosentino SA, Stern Y, Sokolov E, Scarmeas N, Manly JJ, Tang MX, et al. Plasma β-amyloid and cognitive decline. Arch Neurol. 2010; 67(12):1485-90. DOI: 10.1001/archneurol.2010.189.10.1001/archneurol.2010.189Search in Google Scholar

28. Laske C, Sopova K, Gkotsis C, Eschweiler GW, Straten G, Gawaz M, et al. Amyloid-β peptides in plasma and cognitive decline after 1 year follow-up in Alzheimer’s disease patients. J Alzheimers Dis. 2010; 21(4):1263-9.10.3233/JAD-2010-100510Search in Google Scholar

29. Yaffe K, Weston A, Graff-Radforf NR, Satterfield S, Simonsick EM, Younkin LH, et al. Association of plasma beta-amyloid level and cognitive reserve with subsequent cognitive decline. JAMA. 2011. 305(3):261-6. DOI: 10.1001/jama.2010.1995.10.1001/jama.2010.1995Search in Google Scholar

30. Van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM. Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-control study. Lancet Neurol. 2006 Aug; 5(8):655-60. DOI: 10.1016/ S1474-4422(06)70501-4.10.1016/S1474-4422(06)70501-4Search in Google Scholar

31. Schupf N, Tang MX, Fukuyama H, Manly J, Andrews H, Mehta P, et al. Peripheral Abeta subspecies as risk biomarkers of Alzheimer’s disease. Proc Natl Acad Sci USA. 2008 Sep 16; 105(37):14052-7. DOI: 10.1073/ pnas.0805902105.10.1073/pnas.0805902105254457718779561Search in Google Scholar

32. Wu G, Sankaranarayanan S, Wong J, Tugusheva K, Michener MS, Shi X, et al. Characterization of plasma β-secretase (BACE1) activity and soluble amyloid precursor proteins as potential biomarkers for Alzheimer’s disease. J Neurosci Res. 2012 Dec; 90(12):2247-58. DOI: 10.1002/jnr.23122.10.1002/jnr.2312222987781Search in Google Scholar

33. Noguchi-Shinohara M, Hamaguchi T, Nozaki I, Sakai K Yamada M. Serum tau protein as a marker for the diagnosis of Creutzfeldt-Jackob disease. J Neurol. 2011 Aug; 258(8):1464-8. DOI: 10.1007/s00415-011-5960-x.10.1007/s00415-011-5960-x21360196Search in Google Scholar

34. Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K, Randall J, et al. Plasma tau levels in Alzheimer’s disease. Alzheimers Res Ther. 2013; 5(2):9. DOI: 10.1186/alzrt163. 10.1186/alzrt163370701523551972Search in Google Scholar

35. Randall J, Mortberg E, Provuncher GK, Fournier DR, Duffy DC, Rubertsson S, et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. Resuscitation. 2013 Mar; 84(3):351-6. DOI: 10.1016/j. resuscitation.2012.07.027.Search in Google Scholar

36. Liliang PC, Liang CL, Weng HC, Lu K, Wang KW, Cheng HJ, et al. Tau proteins in serum predict outcome after severe traumatic brain injury. J Surg Res. 2010 May 15; 160(2):302-7. DOI: 10.1016/j.jss.2008.12.022.10.1016/j.jss.2008.12.02219345376Search in Google Scholar

37. Goetzl EJ, Boxer A, Schwartz JB, Abner EL, Petersen RC, Miller BL, et al. Altered lysosomal proteins in neural- derived plasma exosomes in preclinical Alzheimer disease. Neurology. 2015 July 7; 85(1):40-47. DOI: 10.1212/WNL.0000000000001702.10.1212/WNL.0000000000001702450194326062630Search in Google Scholar

38. Zarrouk A, Riedinger JM, Ahmed SH, Hammami S, Chaabane W, Debbabi M, et al. Fatty acid profiles in demented patients: identification of hexacosanoic Acid (c26:0) as a blood lipid biomarker of dementia. J Alzheimers Dis.2015; 44(4):1349-59.10.3233/JAD-14204625428249Search in Google Scholar

39. Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, et al. Metabolomics in early Alzheimer’s disease: identification of altered plasma shpingolipidome using shotgun lipidomics. PLoS One. 2011; 6(7):e21643. DOI: 10.1371/journal.pone.002164310.1371/journal.pone.0021643313692421779331Search in Google Scholar

40. Mielke MM, Haughey NJ, Bandaru VV, Weinberg DD, Darby E, Zaidi N, et al. Plasma sphiengomyelins are associated with cognitive progression in Alzheimer’s disease. J Alzheimers Dis. 2011; 27(2):259-69.10.3233/JAD-2011-110405321819821841258Search in Google Scholar

41. Jerneren F. Brain atrophy in cognitively impaired elderly: the importance of long-chain omega-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr. 2015. doi: 10.3945/ajcn.114.103283. DOI: 10.3945/ajcn.114.103283.10.3945/ajcn.114.10328325877495Search in Google Scholar

42. Baierle M, Vencato PH, Oldenburg L, Bordingnon S, Zibetti M, Trentini CM, et al. Fatty acid status and its relationship to cognitive decline and homocysteine level in the elderly. Nutrients. 2014 Sep 12; 6(9):3624-40. DOI: 10.3390/nu6093624.10.3390/nu6093624417917925221976Search in Google Scholar

43. Freund Levi Y, Vedin I, Cederholm T, Basun H, Faxen Irving G, Eriksdotter M, et al. Transfer of omega-e fatty acids across the blood-brain barrier after dietary supplementation with docosahexanoic acid-rich amega-3 fatty acid preparation in patients with Alzheimer’s disease: the OmegAD study. J Intern Med. 2014 Apr; 275(4):428-36. DOI: 10.1111/joim.12166.10.1111/joim.1216624410954Search in Google Scholar

44. Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 2014 Apr; 20(4):415-8. DOI: 10.1038/nm.3466.10.1038/nm.3466536046024608097Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo