1. bookVolume 24 (2016): Issue 1 (March 2016)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

A novel evaluation of microvascular damage in critically ill polytrauma patients by using circulating microRNAs

Published Online: 19 Mar 2016
Page range: 21 - 30
Received: 13 Dec 2015
Accepted: 06 Mar 2016
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

The management of the critically ill polytrauma patient is complex due to the multiple complications and biochemical and physiopathological imbalances. This happened due to the direct traumatic injury, or due to the post-traumatic events. One of the most complex physiopathology associated to the multiple traumas is represented by microvascular damage, subsequently responsible for a series of complications induced through the imbalance of the redox status, severe molecular damage, reduction of the oxygen delivery to the cell and tissues, cell and mitochondrial dead, augmentation of the inflammatory response and finally the installation of multiple organ dysfunction syndrome in this type of patients. A gold goal in the intensive care units is represented by the evaluation and intense monitoring of the molecular and physiopathological dysfunctions of the critically ill patients. Recently, it was intensely researched the use of microRNAs as biomarkers for the specific physiopathological dysfunctions. In this paper we wish to present a series of microRNAs that can serve as biomarkers for the evaluation of microvascular damage, as well as for the evaluation of other specific physiopathology for the critically ill polytrauma patient.

Keywords

1. Kalla M, Herring N. Physiology of shock and volume resuscitation. Surg. 2013;31(11):545–51. DOI: 10.1016/j.mpsur.2013.08.01210.1016/j.mpsur.2013.08.012Search in Google Scholar

2. White NJ, Martin EJ, Brophy DF, Ward KR. Coagulopathy and traumatic shock: Characterizing hemostatic function during the critical period prior to fluid resuscitation. Resuscitation. 2010;81:111–6. DOI: 10.1016/j.resuscitation.2009.09.01710.1016/j.resuscitation.2009.09.017281507019854556Search in Google Scholar

3. Zampieri FG, Kellum J a, Park M, Ranzani OT, Barbeiro H V, de Souza HP, et al. Relationship between acid-base status and inflammation in the critically ill. Crit Care. 2014;18(4):R154. DOI: 10.1186/cc1399310.1186/cc13993422354525034180Search in Google Scholar

4. Trancă SD, Laura C, Hagă N. Biomarkers in polytrauma induced systemic inflammatory response syndrome and sepsis – a narrative review. Rom J Anesth Int Care. 2014;21(2):118–22.Search in Google Scholar

5. Maschirow L, Khalaf K, La-Aubaidy H, Jelinek HF. Inflammation, coagulation, endothelial dysfunction and oxidative stress in prediabetes — Biomarkers as a possible tool for early disease detection for rural screening. Clin Biochem. 2015;48(9):581-5. DOI: 10.1016/j.clinbiochem.2015.02.01510.1016/j.clinbiochem.2015.02.01525753569Search in Google Scholar

6. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):1–7. DOI: 10.1371/journal.pone.000314810.1371/journal.pone.0003148251978918773077Search in Google Scholar

7. Weber J, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41. DOI: 10.1373/clinchem.2010.14740510.1373/clinchem.2010.147405484627620847327Search in Google Scholar

8. Zhou J, Chaudhry H, Zhong Y, Ali MM, Perkins LA, Owens WB, et al. Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology. Cytokine. 2015;71(1):89–100. DOI: 10.1016/j.cyto.2014.09.00310.1016/j.cyto.2014.09.003425259125265569Search in Google Scholar

9. Roderburg C, Luedde T. Circulating microRNAs as markers of liver inflammation, fibrosis and cancer. J Hepatol. 2014;61(6):1434–7. DOI: 10.1016/j.jhep.2014.07.01710.1016/j.jhep.2014.07.01725306489Search in Google Scholar

10. Donati A, Damiani E, Luchetti M, Domizi R, Scorcella C, Carsetti A, et al. Microcirculatory effects of the transfusion of leukodepleted or non-leukodepleted red blood cells in patients with sepsis: a pilot study. Crit Care. 2014;18(2):R33. DOI: 10.1186/cc1373010.1186/cc13730405740024528648Search in Google Scholar

11. Bateman RM, Sharpe MD, Jagger JE, Ellis CG. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries. Crit Care. 2015;19(1):389. DOI: 10.1186/s13054-015-1102-710.1186/s13054-015-1102-7463418926537126Search in Google Scholar

12. Chelazzi C, Villa G, Mancinelli P, De Gaudio a R, Adembri C. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care. 2015;19(1):1–7. DOI: 10.1186/s13054-015-0741-z10.1186/s13054-015-0741-z430893225887223Search in Google Scholar

13. Donato A, Pierce G, Lesniewski L, Seals D. Role of NFκB in age-related vascular endothelial dysfunction in humans. Aging. 2009;1(8):678–81. DOI: 10.18632/aging.10008010.18632/aging.100080280604720157550Search in Google Scholar

14. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted Monocytic miR-150 Enhances Targeted Endo-thelial Cell Migration. Mol Cell. 2010;39(1):133–44. DOI: 10.1016/j.molcel.2010.06.01010.1016/j.molcel.2010.06.01020603081Search in Google Scholar

15. Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D. MicroRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One. 2014;9(6). DOI: 10.1371/journal.pone.009928310.1371/journal.pone.0099283405005924911610Search in Google Scholar

16. Scott E, Loya K, Mountford J, Milligan G, Baker AH. MicroRNA regulation of endothelial homeostasis and commitment - Implications for vascular regeneration strategies using stem cell therapies. Free Radic Biol Med. 2013;64:52–60. DOI: 10.1016/j.freeradbiomed.2013.04.03710.1016/j.freeradbiomed.2013.04.03723665307Search in Google Scholar

17. Hulsmans M, De Keyzer D, Holvoet P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J. 2011;25(8):2515–27. DOI: 10.1096/fj.11-18114910.1096/fj.11-18114921507901Search in Google Scholar

18. Agrawal R, Pandey P, Jha P, Dwivedi V, Sarkar C, Kulshreshtha R. Hypoxic signature of microRNAs in glioblastoma: insights from small RNA deep sequencing. BMC Genomics. 2014;15(1):686. DOI: 10.1186/1471-2164-15-68610.1186/1471-2164-15-686414893125129238Search in Google Scholar

19. Huang C, Xiao X, Chintagari NR, Breshears M, Wang Y, Liu L. MicroRNA and mRNA expression profiling in rat acute respiratory distress syndrome. BMC Med Genomics 2014;7(1):1–15. DOI: 10.1186/1755-8794-7-4610.1186/1755-8794-7-46412853625070658Search in Google Scholar

20. Weiss JB, Eisenhardt SU, Stark GB, Bode C, Moser M, Grundmann S. MicroRNAs in ischemia-reperfusion injury. Am J Cardiovasc Dis. 2012;2(3):237–47.Search in Google Scholar

21. Zhou L, Zang G, Zhang G, Wang H, Zhang X, Johnston N, et al. MicroRNA and mRNA signatures in ischemia reperfusion injury in heart transplantation. PLoS One. 2013;8(11):e79805. DOI: 10.1371/journal.pone.007980510.1371/journal.pone.0079805383587224278182Search in Google Scholar

22. Harris T a, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Pnas. 2008;105(5):1516–21. DOI: 10.1073/pnas.070749310510.1073/pnas.0707493105223417618227515Search in Google Scholar

23. Salloum-Asfar S, Teruel-Montoya R, Arroyo AB, García-Barberá N, Chaudhry A, Schuetz E, et al. Regulation of Coagulation Factor XI Expression by MicroRNAs in the Human Liver. PLoS One. 2014;9(11):e111713. DOI: 10.1371/journal.pone.011171310.1371/journal.pone.0111713422439625379760Search in Google Scholar

24. Chen Z, Li Y, Zhang H, Huang P, Luthra R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 2010;29(30):4362–8. DOI: 10.1038/onc.2010.19310.1038/onc.2010.19320498629Search in Google Scholar

25. Hu Y, Deng H, Xu S, Zhang J. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci. 2015;16(10):24895–917. DOI: 10.3390/ijms16102489510.3390/ijms161024895463278126492239Search in Google Scholar

26. Varga Z V, Kupai K, Szűcs G, Gáspár R, Pálóczi J, Faragó N, et al. MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J Mol Cell Cardiol. 2015;62:111–21. DOI: 10.1016/j.yjmcc.2013.05.00910.1016/j.yjmcc.2013.05.00923722270Search in Google Scholar

27. Xu Y, Fang F, Zhang J, Josson S, St Clair WH, St Clair DK. miR-17* suppresses tumorigenicity of prostate cancer by inhibiting mitochondrial antioxidant enzymes. PLoS One. 2010;5(12):e14356. DOI: 10.1371/journal.pone.001435610.1371/journal.pone.0014356300868121203553Search in Google Scholar

28. Bai X-Y, Ma Y, Ding R, Fu B, Shi S, Chen X-M. miR-335 and miR-34a Promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol. 2011;22(7):1252–1261. DOI: 10.1681/ASN.201004036710.1681/ASN.2010040367313757321719785Search in Google Scholar

29. Wang L, Huang H, Fan Y, Kong B, Hu H, Hu K, et al. Effects of Downregulation of MicroRNA-181a on H2O2-Induced H9c2 Cell Apoptosis via the Mitochondrial Apoptotic Pathway. Oxid Med Cell Longev. 2014;2014:960362. DOI: 10.1155/2014/96036210.1155/2014/960362394239424683439Search in Google Scholar

30. Ma X, Becker Buscaglia LE, Barker JR, Li Y. MicroRNAs in NF-kappaB signaling. J Mol Cell Biol. 2011;3(3):159–66. DOI: 10.1093/jmcb/mjr00710.1093/jmcb/mjr007310401321502305Search in Google Scholar

31. Li T, Morgan MJ, Choksi S, Zhang Y, Kim Y-S, Liu Z. MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKKα during macrophage differentiation. Nat Immunol. 2010;11(9):799–805. DOI: 10.1038/ni.191810.1038/ni.1918292630720711193Search in Google Scholar

32. Zhang X, Liu S, Hu T, Liu S, He Y, Sun S. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology. 2009;50(2):490–9. DOI: 10.1002/hep.2300810.1002/hep.2300819472311Search in Google Scholar

33. Haddad JJ. Science review: Redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for nuclear factor-κB. Crit Care. 2002;6:481–90. DOI: 10.1186/cc183910.1186/cc183915344512493069Search in Google Scholar

34. Huang J, Sun Z, Yan W, Zhu Y, Lin Y, Chen J, et al. Identification of MicroRNA as sepsis biomarker based on miRNAs regulatory network analysis. Biomed Res Int. 2014;2014.10.1155/2014/594350399799724809055Search in Google Scholar

35. Wang H, Yu B, Deng J, Jin Y, Xie L. Serum miR-122 correlates with short-term mortality in sepsis patients. Crit Care. 2014;18(6):1–4. DOI: 10.1186/s13054-014-0704-910.1186/s13054-014-0704-9426297125672224Search in Google Scholar

36. Ma Y, Vilanova D, Atalar K, Delfour O, Edgeworth J, Ostermann M, et al. Genome-Wide Sequencing of Cellular microRNAs Identifies a Combinatorial Expression Signature Diagnostic of Sepsis. PLoS One. 2013;8(10). DOI: 10.1371/journal.pone.007591810.1371/journal.pone.0075918379781224146790Search in Google Scholar

37. Magenta A, Greco S, Gaetano C, Martelli F. Oxidative stress and microRNAs in vascular diseases. Int J Mol Sci. 2013;14(9):17319–46. DOI: 10.3390/ijms14091731910.3390/ijms140917319379473023975169Search in Google Scholar

38. Moore CC, McKillop IH, Huynh T. MicroRNA expression following activated protein C treatment during septic shock. J Surg Res. 2012;182(1):116–26. DOI: 10.1016/j.jss.2012.07.06310.1016/j.jss.2012.07.06322940033Search in Google Scholar

39. Vasilescu C, Rossi S, Shimizu M, Tudor S, Veronese A, Ferracin M, et al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One. 2009;4(10). DOI: 10.1371/journal.pone.000740510.1371/journal.pone.0007405275662719823581Search in Google Scholar

40. McClure C, Brudecki L, Ferguson Da., Yao ZQ, Moorman JP, McCall CE, et al. MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis. Infect Immun. 2014;82(9):3816–25. DOI: 10.1128/IAI.01495-1410.1128/IAI.01495-14418781824980967Search in Google Scholar

41. Vaporidi K, Iliopoulos D, Francis RC, Bloch KD, Zapol WM. MicroRNA Expression Profile In A Murine Model Of Ventilator-induced Lung Injury. Am J Physiol Lung Cell Mol Physiol. 2012;303(3):L199–L207. DOI: 10.1152/ajplung.00370.201110.1152/ajplung.00370.2011342386322659882Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo