1. bookVolume 24 (2016): Issue 1 (March 2016)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Saliva leukocytes rather than saliva epithelial cells represent the main source of DNA

Published Online: 19 Mar 2016
Page range: 31 - 44
Received: 16 Nov 2015
Accepted: 16 Feb 2016
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Introduction. Several alternative methods to peripheral blood DNA extraction have been implemented so far. Saliva seems to represent a very advantageous type of sample, easy to harvest and able to generate DNA yields comparable to those extracted from blood mononuclear cells.

Material and methods. 8 patients suspected of ankylosing spondylitis, 9 patients with various hematological malignancies, displaying post-chemotherapy leucopenia and 30 healthy volunteers were included in our study. DNA was extracted with various commercially available kits and used for HLA typing either by PCR amplification, or by PCR followed by hybridization.

Results. Our data regarding HLA typing support already published results regarding the good DNA quality that allows its use in various molecular biology techniques. However, when attempting to use saliva from immunosuppressed patients for DNA extraction we have generated very low yields, comparable again with the ones obtained from peripheral blood. Flow cytometry and immunocytochemistry investigations confirmed the low number of leukocytes present in the saliva of these patients, while the number of epithelial cells was virtually unchanged.

Conclusions. The main source of saliva DNA seems to be represented by leukocytes present in this fluid and not by the epithelial cells. Under these circumstances, for immunosuppressed patients saliva cannot represent an alternative to blood when attempting DNA extraction.

Keywords

1. Austin MA, Ordovas JM, Eckfeldt JH, Tracy R, Boerwinkle E, Lalouel JM, et al. Guidelines of the National Heart, Lung, and Blood Institute Working Group on Blood Drawing, Processing, and Storage for Genetic Studies. Am J Epidemiol. 1996;1;144(5):437-41.10.1093/oxfordjournals.aje.a0089488781457Search in Google Scholar

2. Vaught JB. Blood collection, shipment, processing, and storage. Cancer Epidemiol Biomarkers Prev. 2006, 15(9):1582-4. DOI: 10.1158/1055-9965.EPI-06-063010.1158/1055-9965.EPI-06-063016985016Search in Google Scholar

3. Beckett SM, Laughton SJ, Dalla Pozza L, McCowage GB, Marshall G, Cohn RJ, et al. Buccal Swabs and Treated Cards: Methodological Considerations for Molecular Epidemiologic Studies Examining Pediatric Populations. Am J Epidemiol. 2008; 167(10):1260-7. DOI: 10.1093/aje/kwn01210.1093/aje/kwn01218326872Search in Google Scholar

4. Bennett LC, Kraemer R, Liechti-Gallati S. Buccal cell DNA analysis in premature and term neonates: screening for mutations of the complete coding region for the cystic fibrosis transmembrane conductance regulator. Eur J Pediatr. 2000; 159:99–102. DOI: 10.1007/PL0001381410.1007/PL0001381410653340Search in Google Scholar

5. Gavriel G, Modi N, Stanier P, Moore GE. Neonatal buccal cell collection for DNA analysis. (Letter). Arch Dis Child Fetal Neonatal Ed. 2005; Mar;90(2):F187. DOI: 10.1136/adc.2004.06266110.1136/adc.2004.062661172185815724057Search in Google Scholar

6. Parad RB. Buccal cell DNA mutation analysis for diagnosis of cystic fibrosis in newborns and infants inaccessible to sweat chloride measurement. Pediatrics 1998; 101:851–5. DOI: 10.1542/peds.101.5.85110.1542/peds.101.5.8519565413Search in Google Scholar

7. Yoon PW, Rasmussen SA, Lynberg MC, Moore CA, Anderka M, Carmichael MS, et al. The National Birth Defects Prevention Study. Public Health Rep. 2001; 116(suppl. 1):32–40. DOI: 10.1093/phr/116.S1.3210.1093/phr/116.S1.32191368411889273Search in Google Scholar

8. Quinque D, Kittler R, Kayser M, Stoneking M, Nasidze I. Evaluation of saliva as a source of human DNA for population and association studies. Anal Biochem. 2006; 353:272-7. DOI: 10.1016/j.ab.2006.03.02110.1016/j.ab.2006.03.02116620753Search in Google Scholar

9. Rogers NL, Cole SA, Lan HC, Crossa A, Demerath EW. New saliva DNA collection method compared to buccal cell collection techniques for epidemiological studies. Am J Hum Biol. 2007; 19:319-26. DOI: 10.1002/ajhb.2058610.1002/ajhb.20586279747917421001Search in Google Scholar

10. Koni AC, Scott RA, Wang G, Bailey ME, Peplies J, Bammann K, et al. DNA yield and quality of saliva samples and suitability for large-scale epidemiological studies in children. Int J Obes. 2011; 35:S113-8. DOI: 10.1038/ijo.2011.4310.1038/ijo.2011.4321483410Search in Google Scholar

11. Abraham JE, Maranian MJ, Spiteri I, Russell R, Ingle S, Luccarini C, et al. Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BMC Medical Genomics 2012; 5:19. DOI: 10.1186/1755-8794-5-1910.1186/1755-8794-5-19Search in Google Scholar

12. Rylander-Rudqvist T, Håkansson N, Tybring G, Wolk A. Quality and quantity of saliva DNA obtained from the self-administrated oragene method - a pilot study on the cohort of Swedish men. Cancer Epidemiol Biomarkers Prev. 2006;15(9):1742-5. DOI: 10.1158/1055-9965.EPI-05-070610.1158/1055-9965.EPI-05-0706Search in Google Scholar

13. Küchler EC, Tannure PN, Falagan-Lotsch P, Lopes TS, Granjeiro JM, Amorim LM. Buccal cells DNA extraction to obtain high quality human genomic DNA suitable for polymorphism genotyping by PCR-RFLP and Real-Time PCR. J Appl Oral Sci. 2012;20(4):467-71. DOI: 10.1590/S1678-7757201200040001310.1590/S1678-77572012000400013Search in Google Scholar

14. Harty LC, Shields PG, Winn DM. Self-collection of oral epithelial cell DNA under instruction from epidemiologic interviewers. Am J Epidemiol. 2000; 151:199–205. DOI: 10.1093/oxfordjournals.aje.a01018810.1093/oxfordjournals.aje.a010188Search in Google Scholar

15. Birnboim HC. DNA Yield with OrageneW DNA. Ottawa: DNA Genoteck, Inc.; 2004.Search in Google Scholar

16. Iwasiow RM, Desbois A, Birnboim HC. Long-term stability of DNA from saliva samples stored in Oragene(R)DNASearch in Google Scholar

17. Nunes AP, Oliveira IO, Santos BR, Millech C, Silva LP, González DA, et al. Quality of DNA extracted from saliva samples collected with the Oragene™ DNA self-collection kit. BMC Med Res Methodol. 2012;4(12):65. DOI: 10.1186/1471-2288-12-6510.1186/1471-2288-12-65Search in Google Scholar

18. Looi ML, Zakaria H, Osman J, Jamal R. Quantity and quality assessment of DNA extracted from saliva and blood. Clin Lab. 2012; 58(3-4):307-12.Search in Google Scholar

19. Dawes C. Estimates, from saliva analyses, of the turnover time of the oral mucosal epithelium in humans and the number of bacteria in an edentous mouth. Arch Oral Biol. 2003; 48:329–36. DOI: 10.1016/S0003-9969(03)00014-110.1016/S0003-9969(03)00014-1Search in Google Scholar

20. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982; 31:11-24. DOI: 10.1016/0092-8674(82)90400-710.1016/0092-8674(82)90400-7Search in Google Scholar

21. Le Y, Zhou Y, Iribarren P, Wang J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol. 2004; 1(2):95–104.Search in Google Scholar

22. Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI. Structure and functional expression of a human interleukin-8 receptor. Science. 1991; 253:278–80 DOI: 10.1126/science.184070110.1126/science.18407011840701Search in Google Scholar

23. Feigelson HS, Coetzee GA, Kolonel LN, Ross RK, Henderson BE. A polymorphism in the CYP17 gene increases the risk of breast cancer. Cancer Res. 1997 Mar;57(6):1063-5.Search in Google Scholar

24. Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC, et al. A common 936 C/T gene polymorphism of vascular endothelial growth factor is associated with decreased breast cancer risk. Int J Cancer. 2003;106(4):468-71. DOI: 10.1002/ijc.1123810.1002/ijc.1123812845639Search in Google Scholar

25. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003 Jan;3(1):11-22. DOI: 10.1038/nrc96910.1038/nrc96912509763Search in Google Scholar

26. Vaught JB. Blood collection, shipment, processing, and storage. Cancer Epidemiol Biomarkers Prev. 2006; 15(9):1582-4. DOI: 10.1158/1055-9965.EPI-06-063010.1158/1055-9965.EPI-06-063016985016Search in Google Scholar

27. Richards B, Skoletsky J, Shuber AP, Balfour R, Stern RC, Dorkin HL, et al. Multiplex PCR amplification from the CFTR gene using DNA prepared from buccal brushes/swabs. Hum Mol Genet. 1993; 2:159–63. DOI: 10.1093/hmg/2.2.15910.1093/hmg/2.2.1597684637Search in Google Scholar

28. Vigilant L, Pennington R, Harpending H, Kocher TD, Wilson AC. Mitochondrial DNA sequences in single hairs from a southern African population. Proc Natl Acad Sci USA. 1989; 86:9350–4. DOI: 10.1073/pnas.86.23.935010.1073/pnas.86.23.93502984932594772Search in Google Scholar

29. García-Closas M, Moore LE, Rabkin CS, Franklin T, Struewing J, Ginzinger D, et al. Quantitation of DNA in buccal cell samples collected in epidemiological studies. Biomarkers. 2006;11(5):472-9. DOI: 10.1080/1354750060073382010.1080/1354750060073382016966163Search in Google Scholar

30. Nemoda Z, Horvat-Gordon M, Fortunato CK, Beltzer EK, Scholl JL, Granger DA. Assessing genetic polymorphisms using DNA extracted from cells present in saliva samples. BMC Med Res Methodol. 2011 Dec 19(11):170. DOI: 10.1186/1471-2288-11-17010.1186/1471-2288-11-170326768522182470Search in Google Scholar

31. Nishita DM, Jack LM, McElroy M, McClure JB, Richards J, Swan GE, et al. Clinical trial participant characteristics and saliva and DNA metrics. BMC Med Res Methodol. 2009;29(9):71. DOI: 10.1186/1471-2288-9-7110.1186/1471-2288-9-71277660019874586Search in Google Scholar

32. Vandewoestyne M, Van Hoofstat D, Franssen A, Van Nieuwerburgh F, Deforce D. Presence and potential of cell free DNA in different types of forensic samples. Forensic Sci Int Genet. 2013;7(2):316-20. DOI: 10.1016/j.fsigen.2012.12.00510.1016/j.fsigen.2012.12.00523318134Search in Google Scholar

33. Challacombe SJ, Shirlaw PJ. Immunology of Diseases of the Oral Cavity. In: Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, Mayer L, editors. Mucosal Immunology 3rd ed. London Elsevier Academic Press 2005: 1517-1546. DOI: 10.1016/b978-012491543-5/50093-010.1016/B978-012491543-5/50093-0Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo