1. bookVolume 24 (2016): Issue 1 (March 2016)
Journal Details
First Published
08 Aug 2013
Publication timeframe
4 times per year
access type Open Access

Diabetes mellitus: in search of an improved classification and treatment algorithm

Published Online: 19 Mar 2016
Page range: 9 - 20
Received: 21 Oct 2015
Accepted: 15 Dec 2015
Journal Details
First Published
08 Aug 2013
Publication timeframe
4 times per year

Our current clinical doctrine and practice is based upon a classification of diabetes which relies mainly on some clinical manifestations/criteria, rather than markers of the pathophysiological mechanisms of the disease. An improved classification based on such biological markers (i.e. of insulin resistance, beta cell dysfunction, autoimmunity) may assist in clinical decision and may offer the opportunity of an optimized therapeutic strategy. We address here some important questions that have not yet been clarified, e.g. which markers/indicators best define the main pathogenic mechanisms of the disease in a patient with diabetes and what threshold values are relevant for this purpose.


1. Brooks-Worrell B, Palmer JP. Is diabetes mellitus a continuous spectrum? Clin Chem 2011; 57(2):158-61. DOI: 10.1373/clinchem.2010.14827010.1373/clinchem.2010.14827021068340Search in Google Scholar

2. Lin J, Zhou ZG, Wang JP, Zhang C, Huang G. From Type 1, through LADA, to type 2 diabetes:a continuous spectrum? Ann N Y Acad Sci 2008 Dec; 1150:99-102. DOI: 10.1196/annals.1447.03610.1196/annals.1447.03619120276Search in Google Scholar

3. Fourlanos S, Harrison LC, Colman PG. The accelerator hypothesis and increasing incidence of type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2008; 15(4):321-5. DOI: 10.1097/MED.0b013e3283073a5a10.1097/MED.0b013e3283073a5a18594271Search in Google Scholar

4. Wilkin TJ. The accelerator hypothesis:a review of the evidence for insulin resistance as the basis for type I as well as type II diabetes. Int J Obes (Lond) 2009; 33(7):716-26. DOI: 10.1038/ijo.2009.9710.1038/ijo.2009.9719506563Search in Google Scholar

5. Brooks-Worrell B, Narla R, Palmer JP. Islet Autoimmunity in Phenotypic Type 2 Diabetes Patients. Diabetes Obes Metab 2013; 15:137–40. DOI: 10.1111/dom.1216710.1111/dom.12167426053424003930Search in Google Scholar

6. Welch BJ, Zib I. Case Study:Diabetic Ketoacidosis in Type 2 Diabetes: “Look Under the Sheets”. Clinical Diabetes 2004; 22(4):198-200. DOI: 10.2337/diaclin.22.4.19810.2337/diaclin.22.4.198Search in Google Scholar

7. de Lusignan S, Khunti K, Belsey J, Hattersley A, van Vlymen J, Gallagher H, et al. A method of identifying and correcting miscoding, misclassification and misdiagnosis in diabetes:a pilot and validation study of routinely collected data. Diabet Med 2010; 27(2):203-9. DOI: 10.1111/j.1464-5491.2009.02917.x10.1111/j.1464-5491.2009.02917.x20546265Search in Google Scholar

8. de Lusignan S, Sadek N, Mulnier H, Tahir A, Russell-Jones D, Khunti K. Miscoding, misclassification and misdiagnosis of diabetes in primary care. Diabet Med 2012; 29(2):181-9. DOI: 10.1111/j.1464-5491.2011.03419.x10.1111/j.1464-5491.2011.03419.x21883428Search in Google Scholar

9. Stone MA, Camosso-Stefinovic J, Wilkinson J, de Lusignan S, Hattersley AT, Khunti K. Incorrect and incomplete coding and classification of diabetes:a systematic review. Diabet Med 2010; 27(5):491-7. DOI: 10.1111/j.1464-5491.2009.02920.x10.1111/j.1464-5491.2009.02920.x20536944Search in Google Scholar

10. Tripathi A, Rizvi AA, Knight LM, Jerrell JM. Prevalence and impact of initial misclassification of pediatric type 1 diabetes mellitus. South Med J 2012; 105(10):513-7. DOI: 10.1097/SMJ.0b013e318268ca6010.1097/SMJ.0b013e318268ca6023038480Search in Google Scholar

11. Maraschin Jde F. Classification of diabetes. Adv Exp Med Biol 2012; 771:12-19.10.1007/978-1-4614-5441-0_223393666Search in Google Scholar

12. Leslie RD, Kolb H, Schloot NC, Buzzetti R, Mauricio D, De Leiva A, et al. Diabetes classification:grey zones, sound and smoke:Action LADA 1. Diabetes Metab Res Rev 2008; 24(10):511-9. DOI: 10.1002/dmrr.87710.1002/dmrr.87718615859Search in Google Scholar

13. Sobngwi E, Gautier JF. Adult-onset idiopathic Type I or ketosis-prone Type II diabetes:evidence to revisit diabetes classification. Diabetologia 2002; 45(2):283-5. DOI: 10.1007/s00125-001-0739-810.1007/s00125-001-0739-811935161Search in Google Scholar

14. Cernea S, Raz I, Herold KC, Hirshberg B, Roep BO, Schatz DA, et al; D-Cure Workshop. Challenges in developing endpoints for type 1 diabetes intervention studies. Diabetes Metab Res Rev 2009; 25(8):694-704. DOI: 10.1002/dmrr.100210.1002/dmrr.100219771545Search in Google Scholar

15. Bergman RN, Ader M, Huecking K, Van Citters G. Accurate assessment of beta-cell function:the hyperbolic correction. Diabetes 2002; 51 Suppl 1:S212-20. DOI: 10.2337/diabetes.51.2007.S21210.2337/diabetes.51.2007.S212Search in Google Scholar

16. Jones AG, Hattersley AT. The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet Med 2013; 30(7):803-17. DOI: 10.1111/dme.1215910.1111/dme.12159374878823413806Search in Google Scholar

17. Home P, Riddle M, Cefalu WT, Bailey CJ, Bretzel RG, Del Prato S, et al. Insulin therapy in people with type 2 diabetes:opportunities and challenges? Diabetes Care 2014; 37(6):1499-1508. DOI: 10.2337/dc13-274310.2337/dc13-2743513188424855154Search in Google Scholar

18. Hohberg C, Pfutzner A, Forst T, Lubben G, Karagiannis E, Borchert M, et al. Successful switch from insulin therapy to treatment with pioglitazone in type 2 diabetes patients with residual beta-cell function:results from the PioSwitch study. Diabetes Obes Metab 2009; 11(5):464–71. DOI: 10.1111/j.1463-1326.2008.00975.x10.1111/j.1463-1326.2008.00975.x19422402Search in Google Scholar

19. Lee A, Morley J. Classification of type 2 diabetes by clinical response to metformin–troglitazone combination and C-peptide criteria. Endocr Pract 1999; 5(6):305–13. DOI: 10.4158/EP.5.6.30510.4158/EP.5.6.30515251651Search in Google Scholar

20. Araki H, Tanaka Y, Yoshida S, Morita Y, Kume S, Isshiki K, et al. Oral glucose-stimulated serum C-peptide predicts successful switching from insulin therapy to liraglutide monotherapy in Japanese patients with type 2 diabetes and renal impairment. J Diabetes Investig 2014; 5(4):435-41. DOI: 10.1111/jdi.1216910.1111/jdi.12169421006625411603Search in Google Scholar

21. Patel N, Taveira TH, Choudhary G, Whitlatch H, Wu WC. Fasting Serum C-Peptide Levels Predict Cardiovascular and Overall Death in Nondiabetic Adults. J Am Heart Assoc 2012; 1(6):e003152. DOI: 10.1161/JAHA.112.00315210.1161/JAHA.112.003152354068223316320Search in Google Scholar

22. Cernea S, Huţanu A, Coroş L, Dobreanu M. Assessment of beta cell function in subjects with newly diagnosed type 2 diabetes. Rev Romana Med Lab 2013; 21(2):145-160. DOI: 10.2478/rrlm-2013-001110.2478/rrlm-2013-0011Search in Google Scholar

23. Eckel N, Mühlenbruch K, Meidtner K, Boeing H, Stefan N, Schulze MB. Characterization of metabolically unhealthy normal-weight individuals:Risk factors and their associations with type 2 diabetes. Metabolism 2015; 64(8):862-71. DOI: 10.1016/j.metabol.2015.03.00910.1016/j.metabol.2015.03.00925861921Search in Google Scholar

24. Boonchaya-anant P, Apovian CM. Metabolically healthy obesity--does it exist? Curr Atheroscler Rep 2014; 16(10):441. DOI: 10.1007/s11883-014-0441-110.1007/s11883-014-0441-125092577Search in Google Scholar

25. Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes:a meta-analysis of prospective cohort studies. Obes Rev 2014; 15(6):504-15. DOI: 10.1111/obr.1215710.1111/obr.12157430949724661566Search in Google Scholar

26. Borai A, Livingstone C, Kaddam I, Ferns G. Selection of the appropriate method for the assessment of insulin resistance. BMC Med Res Methodol 2011; 11:158. DOI: 10.1186/1471-2288-11-15810.1186/1471-2288-11-158325820522112229Search in Google Scholar

27. Dabelea D, D’Agostino RB Jr, Mason CC, West N, Hamman RF, Mayer-Davis EJ, et al. Development, validation and use of an insulin sensitivity score in youths with diabetes:the SEARCH for Diabetes in Youth study. Diabetologia 2011; 54(1):78-86. DOI: 10.1007/s00125-010-1911-910.1007/s00125-010-1911-9541295020886205Search in Google Scholar

28. Geloneze B, Vasques AC, Stabe CF, Pareja JC, Rosado LE, Queiroz EC, et al; BRAMS Investigators. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome:Brazilian Metabolic Syndrome Study (BRAMS). Arq Bras Endocrinol Metabol 2009; 53(2):281-7. DOI: 10.1590/S0004-2730200900020002010.1590/S0004-2730200900020002019466221Search in Google Scholar

29. Ziaee A, Esmailzadehha N, Oveisi S, Ghorbani A, Ghanei L. The threshold value of homeostasis model assessment for insulin resistance in Qazvin Metabolic Diseases Study (QMDS):assessment of metabolic syndrome. J Res Health Sci 2015; 15(2):94-100.Search in Google Scholar

30. Bonifacio E. Predicting type 1 diabetes using biomarkers. Diabetes Care 2015; 38(6):989-96. DOI: 10.2337/dc15-010110.2337/dc15-010125998291Search in Google Scholar

31. Pihoker C, Gilliam LK, Hampe CS, Lernmark Å. Autoantibodies in Diabetes. Diabetes 2005; 54 (Suppl 2):S52-S61 DOI: 10.2337/diabetes.54.suppl_2.S5210.2337/diabetes.54.suppl_2.S52Search in Google Scholar

32. Tooley JE, Herold KC. Biomarkers in type 1 diabetes: application to the clinical trial setting. Curr Opin Endocrinol Diabetes Obes 2014(4); 21:287-92. DOI: 10.1097/MED.000000000000007610.1097/MED.0000000000000076Search in Google Scholar

33. Herold KC, Brooks-Worrell B, Palmer J, Dosch HM, Peakman M, Gottlieb P, Reijonen H, Arif S, Spain LM, Thompson C, Lachin JM, et al; Type 1 Diabetes TrialNet Research Group. Validity and reproducibility of measurement of islet autoreactivity by T-cell assays in subjects with early type 1 diabetes. Diabetes 2009; 58(11):2588-95. DOI: 10.2337/db09-024910.2337/db09-0249Search in Google Scholar

34. Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, et al. Staging Presymptomatic Type 1 Diabetes:A Scientific Statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015; 38(10):1964-74. DOI: 10.2337/dc15-141910.2337/dc15-1419Search in Google Scholar

35. Ludvigsson J. The latest pharmacotherapy options for type 1 diabetes. Expert Opin Pharmacother 2014; 15(1):37-49. DOI: 10.1517/14656566.2014.85519710.1517/14656566.2014.855197Search in Google Scholar

36. DeFronzo RA, Eldor R, Abdul-Ghani M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care 2013; 36 Suppl 2:S127-138. DOI: 10.2337/dcS13-201110.2337/dcS13-2011Search in Google Scholar

37. Weng J, Li Y, Xu W, Shi L, Zhang Q, Zhu D, et al. Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes:a multicentre randomised parallel-group trial. Lancet 2008; 371(9626):1753-60. DOI: 10.1016/S0140-6736(08)60762-X10.1016/S0140-6736(08)60762-XSearch in Google Scholar

38. Kobayashi T, Nakanishi K, Murase T, Kosaka K. Small doses of subcutaneous insulin as a strategy for preventing slowly progressive beta-cell failure in islet cell antibody-positive patients with clinical features of NIDDM. Diabetes 1996; 45(5):622-6. DOI: 10.2337/diabetes.45.5.622 DOI: 10.2337/diab.45.5.62210.2337/diabetes.45.5.622Search in Google Scholar

39. Harrison LB, Adams-Huet B, Raskin P, Lingvay I. β-cell function preservation after 3.5 years of intensive diabetes therapy. Diabetes Care 2012; 35(7):1406-12. DOI: 10.2337/dc11-217010.2337/dc11-2170337958522723578Search in Google Scholar

40. Raz I, Mosenzon O. Early insulinization to prevent diabetes progression. Diabetes Care 2013; 36:S190-7. DOI: 10.2337/dcS13-201410.2337/dcS13-2014392080323882045Search in Google Scholar

41. Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY. Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 2005; 90(1):501-6. DOI: 10.1210/jc.2004-069910.1210/jc.2004-069915483097Search in Google Scholar

42. Wajchenberg BL. Beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 2007; 28(2):187-218. DOI: 10.1210/10.1210/er.2006-003810.1210/10.1210/er.2006-003817353295Search in Google Scholar

43. Moon RJ, Bascombe LA, Holt RI. The addition of metformin in type 1 diabetes improves insulin sensitivity, diabetic control, body composition and patient well-being. Diabetes Obes Metab 2007; 9(1):143-5. DOI: 10.1111/j.1463-1326.2006.00599.x10.1111/j.1463-1326.2006.00599.x17199734Search in Google Scholar

44. Liu C1, Wu D, Zheng X, Li P, Li L. Efficacy and safety of metformin for patients with type 1 diabetes mellitus: a meta-analysis. Diabetes Technol Ther 2015; 17(2):142-8. DOI: 10.1089/dia.2014.019010.1089/dia.2014.019025369141Search in Google Scholar

45. Vella S, Buetow L, Royle P, Livingstone S, Colhoun HM, Petrie JR. The use of metformin in type 1 diabetes: a systematic review of efficacy. Diabetologia. 2010;53(5):809-20. DOI: 10.1007/s00125-009-1636-910.1007/s00125-009-1636-920057994Search in Google Scholar

46. Abdelghaffar S, Attia AM. Metformin added to insulin therapy for type 1 diabetes mellitus in adolescents. Cochrane Database Syst Rev. 2009;(1):CD006691. DOI: 10.1002/14651858.cd006691.pub210.1002/14651858.CD006691.pub2738993219160294Search in Google Scholar

47. Munir KM, Davis SN. The treatment of type 1 diabetes mellitus with agents approved for type 2 diabetes mellitus. Expert Opin Pharmacother. 2015; 16(15):2331-41. DOI: 10.1517/14656566.2015.108450210.1517/14656566.2015.108450226340427Search in Google Scholar

48. Traina AN, Lull ME, Hui AC, Zahorian TM, Lyons-Patterson J. Once-weekly exenatide as adjunct treatment of type 1 diabetes mellitus in patients receiving continuous subcutaneous insulin infusion therapy. Can J Diabetes 2014; 38(4):269-72. DOI: 10.1016/j.jcjd.2013.10.00610.1016/j.jcjd.2013.10.00624797495Search in Google Scholar

49. Crisci I, Aragona M, Politi KS, Daniele G, Del Prato S. GLP-1 receptor agonists in type 1 diabetes:a proof-of-concept approach. Acta Diabetol. 2015; 52(6):1129-1133. DOI: 10.1007/s00592-015-0800-610.1007/s00592-015-0800-626293127Search in Google Scholar

50. Ghazi T1, Rink L, Sherr JL, Herold KC. Acute metabolic effects of exenatide in patients with type 1 diabetes with and without residual insulin to oral and intravenous glucose challenges. Diabetes Care 2014; 37(1):210-16. DOI: 10.2337/dc13-116910.2337/dc13-1169396844723939544Search in Google Scholar

51. Kielgast U1, Holst JJ, Madsbad S. Antidiabetic actions of endogenous and exogenous GLP-1 in type 1 diabetic patients with and without residual β-cell function. Diabetes 2011; 60(5):1599-1607. DOI: 10.2337/db10-179010.2337/db10-1790329233621441444Search in Google Scholar

52. Agardh CD, Cilio CM, Lethagen A, Lynch K, Leslie RD, Palmér M, et al. Clinical evidence for the safety of GAD65 immunomodulation in adult-onset autoimmune diabetes. J Diabetes Complications 2005; 19(4):238-46. DOI: 10.1016/j.jdiacomp.2004.12.00310.1016/j.jdiacomp.2004.12.00315993359Search in Google Scholar

53. Buzzetti R, Cernea S, Petrone A, Capizzi M, Spoletini M, Zampetti S, et al; DiaPep Trialists Group. C-peptide response and HLA genotypes in subjects with recent-onset type 1 diabetes after immunotherapy with DiaPep277:an exploratory study. Diabetes 2011; 60(11):3067-72. DOI: 10.2337/db10-056010.2337/db10-0560319807121896927Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo