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ABSTRACT. In this paper, we study the oscillations of a class of conformable
impulsive vector partial functional differential equations. For this class, our ap-

proach is to reduce the multi-dimensional oscillation problems to that of one
dimensional impulsive delay differential inequalities by applying inner product
reducing dimension method and an impulsive differential inequality technique.
We provide an example to illustrate the effectiveness of our main results.

1. Introduction

The theory of fractional differential equations is considered as an important
tool in modelling real life phenomena. It is well-known that fractional differen-
tial equations are a more general form of the integer order differential equations,
extending those equations to an arbitrary (non-integer) order. Many important
mathematical models use fractional order derivatives. But the most frequently
used definitions of the fractional derivative are the Riemann-Liouville derivative
& the Caputo derivative [6, 7]. However, the fractional derivatives thus defined,
have seemed too complex and lack some fundamental properties, like the product
and the chain rule. Thus, in 2014, Khalil [15] et. al introduced a new fractional
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derivative called the conformable derivative which closely resembles the classical
derivative. In the recent years, many researchers have found that fractional differ-
ential equations constitute a more accurate description of real world phenomena.
Nowadays, they are extensively used in physics, electrochemistry, control theory
and electromagnetic fields [16,26].

The theory of impulsive differential equations has gained importance in math-
ematical models of processes and phenomena in optimal control, physics, chem-
ical technology, population dynamics, biotechnology, electrical networks and
economics. They offer a more natural description of the observed phenomena
in these systems. The theory of impulsive differential equations is much richer
than the corresponding theory of differential equations without impulse effects
and has many real world applications [2,18,29–31].

The early work on the oscillation theory of impulsive differential equations
appeared in 1989, in [12]. The first paper on impulsive partial differential equa-
tions [10] was published in 1991. Several authors worked on the oscillatory be-
haviour of impulsive partial differential equations with delays [11,14,21,23,28].
For the essential background on the oscillation theory of differential equations,
we refer the reader to the monographs [17, 32, 33] and the references cited
therein [3,5,9,22].

In 1970, Domšlak introduced the concept of H-oscillation to study the oscil-
latory character of vector differential equations, where H is a unit vector in R

M.
We refer the reader to [8,20,24,25] for the background in the oscillation of vec-
tor differential equations. However, there are only a few papers [4,19,27] dealing
impulsive vector partial differential equations.

1.1. Formulation of the problems

To the best of our knowledge, there are no known oscillation results, for con-
formable nonlinear vector partial differential equations with impulse effects. This
shortage has been the motivation that has led us to study the model of the form

∂α

∂tα

[
r(t)

∂α

∂tα

(
U (x, t)+λ(t)U

(
x, τ(t)

))]
+

b∫
a

q(x, t, ξ)U
(
x, σ(t, ξ)

)
dη(ξ)

= a(t)ΔU (x, t) +
n∑

i=1

bi(t)ΔU
(
x, ρi(t)

)
+ F (x, t), t �= tk

U (x, t+k ) = αk

(
x, tk, U (x, tk)

)
,

∂α

∂tα
U (x, t+k )=βk

(
x, tk,

∂α

∂tα
U (x, tk)

)
, k=1, 2, . . . , (x, t) ∈ Ω×R+ ≡ G.

(1)

Here Ω is a bounded domain in R
M with a piecewise smooth boundary ∂Ω, Δ is

the Laplacian in the Euclidean N -space RN , and the integral in (1) is a Stieltjes
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integral. Moreover, we consider the following boundary condition

∂U (x, t)

∂γ
+ μ(x, t)U (x, t) = 0, (x, t) ∈ ∂Ω× R+ , (2)

where γ is the unit exterior normal vector to ∂Ω, μ(x, t) ∈ C (∂Ω× R+,R+) and

R+ = [0,+∞) and also ∂α

∂tα denotes the conformable partial derivative of order
α, 0 < α ≤ 1.

Next, we define the following set of conditions which we assume to hold,
throughout the paper.

(A1) r(t) ∈ Cα
(
R+, (0,+∞)

)
with

+∞∫
t0

sα−1 1

r(s)
ds = +∞, q(x, t, ξ) ∈ C

(
Ω̄×

R+× [a, b],R+

)
, Q(t, ξ) = min

x∈Ω̄
q(x, t, ξ), σ(t, ξ) ≤ t for ξ ∈ [a, b], σ(t, ξ) ∈

C
(
R+ × [a, b],R

)
, σ(t, ξ) is non-decreasing with respect to t and ξ respec-

tively, and
lim inf

t→+∞, ξ∈[a,b]
σ(t, ξ) = +∞.

There exists a function θ(t) ∈ Cα(R+,R+) satisfying θ(t) � σ(t, a), with
Tα
(
θ(t)
)
> 0 and lim

t→+∞ θ(t) = +∞.

(A2) a(t), bi(t) ∈ PC(R+,R+), i = 1, 2, . . . , n, where PC denotes the class
of functions which are piecewise continuous in t with discontinuities of the
first kind only at t = tk, k = 1, 2, . . . , and left continuous at t = tk,
k = 1, 2, . . .

(A3) ρi(t) ∈ C(R+,R), lim
t→+∞

ρi(t) = +∞ for i = 1, 2, . . . , n, η(ξ) : [a, b] → R is

nondecreasing, F ∈ C(Ḡ,RM ), fH(x, t) ∈ C(Ḡ,R) and
∫
Ω

fH(x, t) dx ≤ 0.

(A4) All the components of U (x, t) and their derivative
∂α

∂tα
U (x, t) are piece-

wise continuous in t with discontinuities of the first kind only at t = tk,
k = 1, 2, . . ., and left continuous at t = tk

U (x, tk) = U (x, t−k ),
∂α

∂tα
U (x, tk) =

∂α

∂tα
U (x, t−k ), k = 1, 2, . . .

(A5) αk, βk ∈ PC(Ω̄× R+ × R,R+) for k = 1, 2, . . . , and there exist constants
ck, c

∗
k, dk, d

∗
k such that for k = 1, 2, . . . ,

c∗k � αk (x, tk, U (x, tk))

U (x, tk)
� ck, d∗k �

βk

(
x, tk,

∂αU (x, tk)

∂tα

)
∂αU (x, tk)

∂tα

� dk.
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���������� 1.1 ([33])� By a solution of (1)−(2), we mean a function U (x, t) ∈
C2α(Ω× [t1,+∞),RM ) ∩ C(Ω× [t̂1,+∞),RM ) which satisfies (1), where

t1 : = min

{
0, inf

t≥0
τ(t), min

1�i�n

{
inf
t�0

ρi(t)
}}

and

t̂1 : = min

{
0, min

ξ∈[a,b]

{
inf
t�0

σ(t, ξ)
}}

.

Now based on this definition of a solution, we can precisely define what we mean
by H-oscillation.

���������� 1.2 ([33])� Let H be a fixed unit vector in R
M . A solution U (x, t)

of (1), (2) is said to be H-oscillatory in G if the inner product 〈U (x, t), H〉 has
a zero in

Ω× [t,+∞) for t > 0.

Otherwise U (x, t) is said to be H-nonoscillatory.

���������� 1.3 ([15])� Given f : [0,∞) → R. Then the “conformable deriva-
tive” of f of order α is defined by

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
,

for all t > 0, α ∈ (0, 1].

If f is α-differentiable in some (0, a), a > 0 and lim
t→0+

f (α)(t) exists, then we

define
f (α)(0) = lim

t→0+
f (α)(t).

���������� 1.4� Iaα(f)(t) = Ia1 (t
α−1f) =

t∫
a

f(x)

x1−α
dx, where the integral is the

usual Riemann improper integral, and α ∈ (0, 1).

���������� 1.5 ( [1])� Let f be a function with n variables x1, x2, . . . , xn.
Then the conformable partial derivative of f of order 0 < α ≤ 1 in xi is
defined as follows

∂α

∂xαi
f(x1, x2, . . . , xn)

= lim
ε→0

f(x1, x2, . . . , xi−1, xi + εx1−α
i , . . . , xn)− f(x1, x2, . . . , xn)

ε
.
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Conformable derivatives have the following properties:

	
����� 1.6� Let α ∈ (0, 1] and f, g be α- differentiable at some point t > 0.
Then:

(i) Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R.

(ii) Tα(t
p) = ptp−α for all p ∈ R.

(iii) Tα(λ) = 0 for all constant functions f(t) = λ.

(iv) Tα(fg) = fTα(g) + gTα(f).

(v) Tα

(
f
g

)
=
gTα(f)− fTα(g)

g2
.

(vi) If f is differentiable, then Tα(f)(t) = t1−α df

dt
(t).

Next, we consider the following lemma, which will help us establish our main
results.


���� 1.7 ([13])� If X and Y are nonnegative, then

Xδ − δXY δ−1 + (δ − 1)Y δ � 0, if δ > 1,

Xδ − δXY δ−1 − (1− δ)Y δ � 0, if 0 < δ < 1.

In both cases, equality holds if and only if X = Y .

For convenience, we use the following notations:

uH(x, t) = 〈U (x, t), H〉, F (t) = c0
b∫
a

Q(t, ξ) dη(ξ),

fH(x, t) = 〈F (x, t), H〉, RH(t) =
1

|Ω|
∫
Ω

uH(x, t) dx,

where

|Ω| =
∫
Ω

dx.

2. Main Results

In this section, we present some sufficient conditions for the H-oscillation
of all solutions of the problem (1)− (2).


���� 2.1� Let H be a fixed unit vector in R
M and let U (x, t) be a solution

of (1).
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(i) If uH(x, t) is eventually positive, then uH(x, t) satisfies the scalar impulsive
conformable partial differential inequality

∂α

∂tα

(
r(t)

∂α

∂tα

(
uH(x, t)+λ(t)uH

(
x, τ(t)

)))
+

b∫
a

Q(t, ξ)uH
(
x, σ(t, ξ)

)
dη(ξ)

−a(t)ΔuH(x, t)−
n∑

i=1

bi(t)ΔuH
(
x, ρi(t)

)
� fH(x, t), t �= tk,

c∗k � uH(x, t+k )

uH(x, tk)
� ck, d∗k �

∂α

∂tα
uH(x, t+k )

∂α

∂tα
uH(x, tk)

� dk, k = 1, 2, . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3)

(ii) If uH(x, t) is eventually negative, then uH(x, t) satisfies the scalar impul-
sive conformable partial differential inequality

∂α

∂tα

(
r(t)

∂α

∂tα

(
uH(x, t)+λ(t)uH

(
x, τ(t)

)))
+

b∫
a

Q(t, ξ)uH
(
x, σ(t, ξ)

)
dη(ξ)

−a(t)ΔuH(x, t) −
n∑

i=1

bi(t)ΔuH
(
x, ρi(t)

)
� fH(x, t), t �= tk,

c∗k � uH(x, t+k )

uH(x, tk)
� ck, d∗k �

∂α

∂tα
uH(x, t+k )

∂α

∂tα
uH(x, tk)

� dk, k = 1, 2, . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4)

P r o o f. (i) Let uH(x, t) be eventually positive.
Case(1): t �= tk, k = 1, 2, . . . Taking the inner product of (1) and H, we have

∂α

∂tα

[
r(t)

∂α

∂tα

(
〈U (x, t), H〉+ λ(t)

〈
U
(
x, τ(t)

)
, H
〉)]

+
b∫
a

q(x, t, ξ)
〈
U
(
x, σ(t, ξ)

)
, H
〉
dη(ξ) = a(t)Δ〈U (x, t), H〉

+
n∑

i=1

bi(t)Δ
〈
U
(
x, ρi(t)

)
, H
〉
+ 〈F (x, t), H〉, t �= tk,

that is,

∂α

∂tα

[
r(t)

∂α

∂tα

(
uH(x, t) + λ(t)uH

(
x, τ(t)

))]
+

b∫
a

q(x, t, ξ)uH
(
x, σ(t, ξ)

)
dη(ξ)

= a(t)ΔuH(x, t) +
m∑
i=1

bi(t)ΔuH
(
x, ρi(t)

)
+ fH(x, t), t �= tk. (5)
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By condition (A1), we have

b∫
a

q(x, t, ξ)uH
(
x, σ(t, ξ)

)
dη(ξ) �

b∫
a

Q(t, ξ)uH
(
x, σ(t, ξ)

)
dη(ξ). (6)

From (5) and (6), it follows that

∂α

∂tα

(
r(t)

∂α

∂tα

(
uH(x, t)+λ(t)uH

(
x, τ(t)

)))
+

b∫
a

Q(t, ξ)uH
(
x, σ(t, ξ)

)
dη(ξ)

−a(t)ΔuH(x, t)−
n∑

i=1

bi(t)ΔuH
(
x, ρi(t)

)
� fH(x, t), t �= tk.

⎫⎪⎪⎬⎪⎪⎭ (7)

Case(2): t = tk, k = 1, 2, . . . Taking the inner product of (1) and H and
using (A5), we get

c∗k � 〈U (x, t+k ), H〉
〈U (x, tk), H〉 � ck, d∗k �

〈
∂α

∂tα
U (x, t+k ), H

〉
〈
∂α

∂tα
U (x, tk), H

〉 � dk,

that is

c∗k � uH(x, t+k )

uH(x, tk)
� ck, d∗k �

∂α

∂tα
uH(x, t+k )

∂α

∂tα
uH(x, tk)

� dk. (8)

Therefore, combining (7) and (8) we immediately obtain (3), which shows that
uH(x, t) satisfies the scalar impulsive conformable partial differential inequal-
ity (3).

(ii) The proof is similar to case (i) and thus, it is omitted. The proof is complete.
�

Let H be a fixed unit vector in R
M. Then the inner product of the boundary

condition (2) and H yields the following boundary condition:

∂uH(x, t)

∂γ
+ μ(x, t)uH(x, t) = 0, (x, t) ∈ ∂Ω× R+. (9)


���� 2.2� Let H be a fixed unit vector in R
M. If the scalar impulsive con-

formable partial differential inequality (3) [ (4)] has no eventually positive so-
lutions [negative solutions] and satisfies the boundary condition (9), then every
solution U (x, t) of the boundary value problem (1) − (2) is H-oscillatory in G.
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P r o o f. Suppose to the contrary that there is aH-nonoscillatory solution U (x, t)
of the boundary value problem (1) − (2) in G, then uH(x, t) is eventually pos-
itive or eventually negative. If uH(x, t) is eventually positive, by Lemma 2.1,
we easily obtain that uH(x, t) satisfies the scalar impulsive partial differential
inequality (3). On the other hand, it is easy to see that uH(x, t) satisfies the
boundary condition (9). This is a contradiction to the hypothesis.

Similarly, if uH(x, t) is eventually negative, using Lemma 2.1, we easily ob-
tain that uH(x, t) satisfies the scalar impulsive partial differential inequality (4).
It is obvious that uH(x, t) satisfies the boundary condition (9). This is a contra-
diction. The proof is complete. �

	
����� 2.3� Let H be a fixed unit vector in R
M . If the impulsive conformable

differential inequality

Tα
[
r(t)Tα

(
ZH(t)

)]
+ F (t)ZH

(
θ(t)
)
� 0, t �= tk,

c∗k � ZH(t+k )

ZH(tk)
� ck, d∗k � Tα(ZH(t+k ))

Tα(ZH(tk))
� dk, k = 1, 2, . . . ,

⎫⎪⎪⎬⎪⎪⎭ (10)

has no eventually positive solutions and the impulsive conformable differential
inequality

Tα
[
r(t)Tα

(
ZH(t)

)]
+ F (t)ZH

(
θ(t)
)
� 0, t �= tk,

c∗k � ZH(t+k )

ZH(tk)
� ck, d∗k � Tα(ZH(t+k ))

Tα(ZH(tk))
� dk, k = 1, 2, . . . ,

⎫⎪⎪⎬⎪⎪⎭ (11)

has no eventually negative solutions satisfying the boundary condition (9), then
every solution U (x, t) of the problem (1), (2) is H-oscillatory in G.

P r o o f. Suppose that there exists a solution U (x, t) of (1) − (2), which is not
H-oscillatory in G. Without loss of generality, we can assume that uH(x, t) > 0
in Ω × [t0,+∞), for some t0 > 0. Then, from the assumption that there exists
a t1 > t0 such that σ(t, ξ) � t0, for (t, ξ) ∈ [t1,+∞) × [a, b] and τ(t) � t0,
ρi(t) � t0, i = 1, 2, . . . , n for t � t1, we have that

uH
(
x, σ(t, ξ)

)
> 0, uH

(
x, τ(t)

)
> 0 and uH

(
x, ρi(t)

)
> 0,

for x ∈ Ω, t ∈ [t1,+∞), ξ ∈ [a, b], i = 1, 2, . . . , n.
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For t � t0 and t �= tk for k = 1, 2, . . . , we multiply both sides of inequality (3)

by
1

|Ω| and integrate with respect to x over the domain Ω to attain

t1−α d

dt

[
r(t)t1−α d

dt

(
1

|Ω|
∫
Ω

uH(x, t) dx+ λ(t)
1

|Ω|
∫
Ω

uH
(
x, τ(t)

)
dx

)]
+

1

|Ω|
∫
Ω

b∫
a

Q(t, ξ)uH
(
x, σ(t, ξ)

)
dη(ξ) dx− a(t)

1

|Ω|
∫
Ω

ΔuH(x, t) dx

−
n∑

i=1

bi(t)
1

|Ω|
∫
Ω

ΔuH
(
x, ρi(t)

)
dx � 1

|Ω|
∫
Ω

fH(x, t) dx, t �= tk.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(12)

Using Green’s formula and boundary condition (9), we have that∫
Ω

ΔuH(x, t) dx =

∫
∂Ω

∂uH(x, t)

∂γ
dS = −

∫
∂Ω

μ(x, t)uH(x, t) dS � 0. (13)

For i = 1, 2, . . . , n,∫
Ω

ΔuH(x, ρi(t)) dx =

∫
∂Ω

∂uH
(
x, ρi(t)

)
∂γ

dS,

= −
∫
∂Ω

μ
(
x, ρi(t)

)
uH
(
x, ρi(t)

)
dS � 0, t � t0 (14)

where dS is the surface element on ∂Ω. Moreover, by (A3),
∫
Ω

fH(x, t) dx � 0.

Combining (12)–(14) we get

t1−α d

dt

[
r(t)t1−α d

dt

(
RH(t) + λ(t)RH

(
τ(t)
))]

+
b∫
a

Q(t, ξ)RH(σ
(
t, ξ)
)
dη(ξ) � 0, t ≥ t0.

Setting ZH(t) = RH(t) + λ(t)RH

(
τ(t)
)
, we have

Tα
[
r(t)Tα

(
ZH(t)

)]
+

b∫
a

Q(t, ξ)RH

(
σ(t, ξ)

)
dη(ξ) � 0. (15)

Clearly, ZH(t) > 0 for t � t1. Next we prove that Tα
(
ZH(t)

)
> 0 for t � t2.

In fact, assume there exists K � t2 such that Tα
(
ZH(t)

)
� 0. Then, we have

Tα
[
r(t)Tα

(
ZH(t)

)]
�−

b∫
a

Q(t, ξ)RH

(
σ(t, ξ)

)
dη(ξ), (16)
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from which, we obtain

Tα
[
r(t)Tα

(
ZH(t)

)]
� 0. (17)

From (17), we have

r(t)Tα
(
ZH(t)

) ≤ r(K)Tα
(
ZH(K)

)
� 0, t � K.

Thus

ZH(t) � ZH(K) + r(K)K1−αZ ′
H(K)

t∫
K

sα−1 ds

r(s)
, for t � K.

Also, from (A1), we have lim
t→∞ZH(t) = −∞, which contradicts the fact that

ZH(t) > 0, for t > 0. Hence Tα
(
ZH(t)

)
> 0 and since τ(t) � t for t � t1,

we have

RH(t) = ZH(t)− λ(t)RH

(
τ(t)
)
�
(
1− λ(t)

)
ZH(t)

and

RH

(
σ(t, ξ)

)
� c0ZH

(
σ(t, ξ)

)
,

where c0 = 1− λ(t) is a positive constant.
Therefore from (15), we have

Tα
[
r(t)Tα

(
ZH(t)

)]
+ c0

b∫
a

Q(t, ξ)ZH

(
σ(t, ξ)

)
dη(ξ) � 0. t ≥ t0.

From (A1) and Tα
(
ZH(t)

)
> 0, we have

ZH

(
σ(t, ξ)

)
� ZH

(
σ(t, a)

)
> 0, ξ ∈ [a, b] and θ(t) � σ(t, a) � t.

Thus, ZH

(
θ(t)
)
� ZH

(
σ(t, a)

)
and therefore

Tα
[
r(t)Tα

(
ZH(t)

)]
+ F (t)ZH

(
θ(t)
)
� 0, t ≥ t1. (18)

For t � t0, t = tk, k = 1, 2, . . . , multiplying both sides of inequality (3) by
1

|Ω|
and integrating with respect to x over the domain Ω, we obtain

c∗k � RH(t+k )

RH(tk)
� ck, d∗k � Tα(RH(t+k ))

Tα(RH(tk))
� dk.

Since ZH(t) = RH(t) + λ(t)RH

(
τ(t)
)
, we have that

c∗k � ZH(t+k )

ZH(tk)
� ck, d∗k � Tα(ZH(t+k ))

Tα(ZH(tk))
� dk. (19)

Therefore (18) and (19) show that ZH(t) > 0 is a positive solution of the impul-
sive differential inequality (10). This is a contradiction.
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Suppose now, that uH(x, t) < 0 is a negative solution of the impulsive par-
tial differential inequality (4) satisfying the boundary condition (9), (x, t) ∈
Ω × [t0,+∞), t0 > 0. Applying the same procedure as above, we arrive at a
contradiction. This completes the proof. �

	
����� 2.4� If there exists a function ψ(t) ∈ Cα
(
R+, (0,+∞)

)
which is

nondecreasing with respect to t, such that

+∞∫
t0

∏
t0�tk<s

(
dk
c∗k

)−1

sα−1

[
ψ(s)F (s)− E2(s)

4G(s)

]
ds = +∞, (20)

where

E(t) =
Tα(ψ(t))

ψ(t)
and G(t) =

1

r(t)ψ(t)
,

then every solution of the boundary value problem (1)−(2) is H-oscillatory in G.

P r o o f. We show that inequality (10) has no eventually positive solution, if the
conditions of Theorem 2.3 hold. Suppose that ZH(t) is an eventually positive
solution of the inequality (10) then there exists a number t1 � t0 such that
ZH

(
θ(t)
)
> 0 for t � t1. Thus we have

Tα
[
r(t)Tα

(
ZH(t)

)]
+ F (t)ZH

(
θ(t)
)
� 0. (21)

Define the Riccati transformation

W (t) := ψ(t)
r(t)Tα(ZH(t))

ZH(θ(t))
.

Then

W (t) � 0 and Tα
(
W (t)

)
� Tα

(
ψ(t)

)W (t)

ψ(t)
− ψ(t)F (t)− W 2(t)

r(t)ψ(t)
.

Thus

Tα
(
W (t)

)
� E(t)W (t) − F (t)ψ(t)−W 2(t)G(t) and W (t+k ) �

dk
c∗k
W (tk).

We define

S(t) =
∏

t0�tk<t

(
dk
c∗k

)−1

W (t).

It is clear that W (t) is continuous in each interval (tk, tk+1]. Since W (t+k ) ≤
dk
c∗k
W (tk), it follows that

S(t+k ) =
∏

t0�tj�tk

(
dk
c∗k

)−1

W (t+k ) �
∏

t0�tj<tk

(
dk
c∗k

)−1

W (tk) = S(tk)
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and for all t � t0,

S(t−k ) =
∏

t0�tj�tk−1

(
dk
c∗k

)−1

W (t−k ) ≤
∏

t0�tj<tk

(
dk
c∗k

)−1

W (tk) = S(tk),

which implies that S(t) is continuous on [t0,+∞). Also

Tα
(
S(t)

)
+
∏

t0�tk<t

(
dk
c∗k

)
S2(t)G(t) +

∏
t0�tk<t

(
dk
c∗k

)−1

F (t)ψ(t)− S(t)E(t)

=
∏

t0�tk<t

(
dk
c∗k

)−1[
Tα
(
W (t)

)
+W 2(t)G(t)−W (t)E(t) + F (t)ψ(t)

]
� 0.

Therefore,

Tα
(
S(t)

)
� −

∏
t0�tk<t

(
dk
c∗k

)
G(t)S2(t) + S(t)E(t)

−
∏

t0�tk<t

(
dk
c∗k

)−1

F (t)ψ(t). (22)

Taking

X(t) =

⎛⎝ ∏
t0�tk<t

(
dk
c∗k

)
G(t)

⎞⎠
1
2

S(t)

and

Y (t) =
E(t)

2

⎛⎝ ∏
t0≤tk<t

(
dk
c∗k

)−1
1

G(t)

⎞⎠
1
2

and using Lemma 1.7, we have

E(t)S(t) −
∏

t0�tk<t

(
dk
c∗k

)
G(t)S2(t) � E2(t)

4G(t)

∏
t0�tk<t

(
dk
c∗k

)−1

.

Thus

Tα
(
S(t)

)
� −

∏
t0�tk<t

(
dk
c∗k

)−1 [
F (t)ψ(t)− E2(t)

4G(t)

]
.
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Integrating both sides from t0 to t, we have

S(t) � S(t0)−
t∫

t0

∏
t0�tk<s

(
dk
c∗k

)−1

sα−1

[
ψ(s)F (s)− E2(s)

4G(s)

]
ds.

Letting t → ∞ and using (20) we have lim
t→∞S(t) = −∞, which leads to a

contradiction with S(t) � 0 and completes the proof. �

	
����� 2.5� Assume that there exist functions ψ and φ ∈ Cα(R+,
(
0,+∞)

)
,

where ψ is nondecreasing and functions b, B ∈ Cα(B,R), where B = {(t, s) : t �
s � t0 > 0} such that:

(A6) B(t, t) = 0 and B(t, s) > 0 for all t > s � t0,

(A7)
∂B(t, s)

∂t
� 0 and

∂B(t, s)

∂s
� 0,

(A8) −∂B(t, s)

∂s
= b(t, s)

√
B(t, s).

If

lim sup
t→+∞

1

B(t, t0)

t∫
t0

∏
t0�tk<r

(
dk
c∗k

)−1
(
F (r)ψ(r)B(t, r)φ(r)

− 1

4

[
r1−αφ′(r)

√
B(t, r) − b(t, r)r1−αφ(r)

+(1− α)r−α
√
B(t, r)φ(r) +E(r)φ(r)

√
B(t, r)

]2
· 1

G(r)φ(r)

)
dr

= +∞,

(23)

then every solution of the boundary value problem (1)−(2) is H-oscillatory in G.

P r o o f. Let ZH(t) be an eventually positive solution of (10). Proceeding as
in the proof of Theorem 2.4 we obtain

Tα
(
S(t)

)
� −

∏
t0�tk<t

(
dk
c∗k

)
G(t)S2(t) + S(t)E(t)

−
∏

t0�tk<t

(
dk
c∗k

)−1

F (t)ψ(t).
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Multiplying the above inequality by B(t, s)φ(s), for t � s � K and integrating
from K to t, we have

t∫
K

r1−αS′(r)B(t, r)φ(r) dr

� −
t∫

K

∏
t0�tk<r

(
dk
c∗k

)
G(r)S2(r)B(t, r)φ(r) dr

+

t∫
K

S(r)E(r)B(t, r)φ(r) dr

−
t∫

K

∏
t0�tk<r

(
dk
c∗k

)−1

F (r)ψ(r)B(t, r)φ(r) dr.

Thus we have
t∫

K

∏
t0�tk<r

(
dk
c∗k

)−1

F (r)ψ(r)B(t, r)φ(r) dr

� S(K)B(t,K)K1−αφ(K)

+

t∫
K

[
∂B(t, r)

∂r
r1−αφ(r) +B(t, r)r1−αφ′(r) + (1− α)r−αB(t, r)φ(r)

]
S(r) dr

+

t∫
K

E(r)B(t, r)φ(r)S(r) dr −
t∫

K

∏
t0�tk<r

(
dk
c∗k

)
G(r)S2(r)B(t, r)φ(r) dr.

Therefore,

t∫
K

∏
t0�tk<r

(
dk
c∗k

)−1

F (r)ψ(r)B(t, r)φ(r) dr

− 1

4

t∫
K

∏
t0�tk<r

(
dk
c∗k

)−1 [
r1−αφ′(r)

√
B(t, r) − b(t, r)r1−αφ(r)

+(1− α)r−α
√
B(t, r)φ(r) +E(r)φ(r)

√
B(t, r)

]2
· 1

G(r)φ(r)
dr

� S(K)B(t,K)K1−αφ(K).

(24)
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From (24), for t � K � t0, we have

1

B(t, t0)

t∫
t0

∏
t0�tk<r

(
dk
c∗k

)−1

×
[
F (r)ψ(r)B(t, r)φ(r) − 1

4

[
r1−αφ′(r)

√
B(t, r) − b(t, r)r1−αφ(r)

+(1− α)r−α
√
B(t, r)φ(r) +E(r)φ(r)

√
B(t, r)

]2
· 1

G(r)φ(r)

]
dr

=
1

B(t, t0)

⎡⎣ K∫
t0

+

t∫
K

⎤⎦{ ∏
t0≤tk<r

(
dk
c∗k

)−1
(
F (r)ψ(r)B(t, r)φ(r)

− 1

4

[
r1−αφ′(r)

√
B(t, r) − b(t, r)r1−αφ(r)

+(1− α)r−α
√
B(t, r)φ(r) +E(r)φ(r)

√
B(t, r)

]2
· 1

G(r)φ(r)

)}
dr

�
K∫

t0

∏
t0�tk<r

(
dk
c∗k

)−1

F (r)ψ(r)φ(r) dr + φ(K)K1−αS(K).

Letting t→ +∞, we have

lim sup
t→+∞

1

B(t, t0)

t∫
t0

∏
t0�tk<r

(
dk
c∗k

)−1
(
F (r)ψ(r)B(t, r)φ(r)

− 1

4

[
r1−αφ′(r)

√
B(t, r) − b(t, r)r1−αφ(r)

+(1− α)r−α
√
B(t, r)φ(r) +E(r)φ(r)

√
B(t, r)

]2
· 1

G(r)φ(r)

)
dr

�
K∫

t0

∏
t0�tk<r

(
dk
c∗k

)−1

F (r)ψ(r)φ(r) dr + φ(K)K1−αS(K)

< +∞,

which contradicts (23). The proof of the theorem is complete. �

Choosing φ(r) = ψ(r) ≡ 1, in Theorem 2.5, we obtain the following result.
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��������� 2.6� Assume that the conditions of Theorem 2.5 hold and

lim sup
t→+∞

1

B(t, t0)

t∫
t0

∏
t0�tk<s

(
dk
c∗k

)−1 (
F (r)B(t, r)

− 1

4

[
(1− α)r−α

√
B(t, r) − b(t, r)r1−α+E(r)

√
B(t, r)

]2
· 1

G(r)

)
dr=+∞.

Then every solution of the boundary value problem (1) − (2) is H-oscillatory
in G.

From Theorem 2.5 and Corollary 2.6, we can obtain several oscillatory criteria,
depending on the choice of the weighted function B(t, s). For example, choosing
B(t, r) = (t− r)ν−1, t � r � t0, in which ν > 2 is an integer, then

b(t, r) = (ν − 1)(t− r)(ν−3)/2, t � r � t0.

Corollary 2.6 leads to the following result.

��������� 2.7� If ν > 2 is an integer such that

lim sup
t→+∞

1

(t− t0)ν−1

t∫
t0

∏
t0�tk<r

(
dk
c∗k

)−1

(t− r)ν−1

×
(
F (r)− 1

4G(r)

[−(ν − 1)r1−α

t− r
+ (1− α)r−α +E(r)

]2)
dr = +∞.

Then every solution of the boundary value problem (1)–(2) is H-oscillatory in G.

3. Example

In this section, we provide an example to illustrate our results.

Example 1. Consider the following impulsive partial differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
1
2

∂t
1
2

(
2
∂

1
2

∂t
1
2

(
U (x, t) + 1

2U (x, t− π)
))

+
3

4

π∫
π/2

U (x, t− ξ) dξ = ΔU (x, t)

+
5

4
ΔU (x, t− π

2 ) + F (x, t), t �= tk, k = 1, 2, . . . ,

U (x, t+k ) =
k

k + 1
U (x, tk),

∂α

∂tα
U (x, t+k ) =

∂α

∂tα
U (x, tk), k = 1, 2, . . . ,

(25)
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for (x, t) ∈ (0, 2π)× R+, with the boundary condition

∂

∂x
U (0, t) =

∂

∂x
U (2π, t) =

(
0
0

)
, t ≥ 0. (26)

Here

Ω = (0, 2π), μ(x, t) = 1, N = 1, M = 2,

n = 1, α =
1

2
, ck = c∗k =

k

k + 1
, dk = d∗k = 1,

r(t) = 2, λ(t) =
1

2
, τ(t) = t− π, σ(t, ξ) = t− ξ,

Q(t, ξ) =
3

4
, a(t) = 1, b1(t) =

5

4
, ρ1(t) = t− π

2 ,

[a, b] = [π/2, π]
and

F (x, t) =

( − cosx (3/2 cos t+ (t− 1/4) sin t)

cosxe−t
(
2t+ (t+ 1/4)eπ + 1/2eπ/2

)
)
.

Let H = e1 =

(
1
0

)
, then we have

fH(x, t) = fe1(x, t) = − cosx

(
3

2
cos t+

(
t− 1

4

)
sin t

)
and ∫

Ω

fe1(x, t) dx = −
∫
Ω

cosx

(
3

2
cos t+

(
t− 1

4

)
sin t

)
dx ≤ 0.

Take θ(t) = t/2, ψ(t) = t. Since

t0 = 1, tk = 2k, E(t) = t−1/2, G(t) =
1

2t
, F (t) =

3π

16
.

Then hypotheses (A1)− (A5) hold, and moreover

lim
t→+∞

t∫
t0

∏
t0�tk<s

(d∗k
ck

)−1

ds =

+∞∫
1

∏
1<tk<s

k

k + 1
ds

=

t1∫
1

∏
1<tk<s

k

k + 1
ds+

t2∫
t+1

∏
1<tk<s

k

k + 1
ds+ · · ·

= 1 +
1

2
× 2 +

1

2
× 2

3
× 22 + · · ·

=

∞∑
n=0

2n

n+ 1
= +∞.

111



G. E. CHATZARAKIS—K. LOGAARASI—T. RAJA—V. SADHASIVAM

Thus
+∞∫
1

∏
1<tk<s

k + 1

k
s−1/2

[
3πs

16
− 1

2

]
ds = +∞.

Therefore all the conditions of Theorem 2.4 are satisfied and hence every solution
U (x, t) of the problem (25)-(26) is e1-oscillatory in G. One such solution is

U (x, t) =

(
cosx sin t

cosx e−t

)
.

We should note that above solution U (x, t) is not e2-oscillatory in G, where

e2 =

(
0
1

)
.
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